Helium dimer
   HOME

TheInfoList



OR:

The helium dimer is a
van der Waals molecule A Van der Waals molecule is a weakly bound complex of atoms or molecules held together by intermolecular attractions such as Van der Waals forces or by hydrogen bonds. The name originated in the beginning of the 1970s when stable molecular clust ...
with formula He2 consisting of two
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, a ...
s. This chemical is the largest
diatomic molecule Diatomic molecules () are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen () or oxygen (), then it is said to be homonuclear. O ...
—a molecule consisting of two atoms bonded together. The bond that holds this
dimer Dimer may refer to: * Dimer (chemistry), a chemical structure formed from two similar sub-units ** Protein dimer, a protein quaternary structure ** d-dimer * Dimer model, an item in statistical mechanics, based on ''domino tiling'' * Julius Dimer ( ...
together is so weak that it will break if the molecule rotates, or vibrates too much. It can only exist at very low
cryogenic In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th IIR International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of “cryogenics” and “cr ...
temperatures. Two excited helium atoms can also bond to each other in a form called an
excimer An excimer (originally short for excited dimer) is a short-lived dimeric or heterodimeric molecule formed from two species, at least one of which has a valence shell completely filled with electrons (for example, noble gases). In this case, form ...
. This was discovered from a
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
of helium that contained bands first seen in 1912. Written as He2* with the * meaning an excited state, it is the first known Rydberg molecule. Several dihelium ions also exist, having net charges of negative one, positive one, and positive two. Two helium atoms can be confined together without bonding in the cage of a
fullerene A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
.


Molecule

Based on
molecular orbital theory In chemistry, molecular orbital theory (MO theory or MOT) is a method for describing the electronic structure of molecules using quantum mechanics. It was proposed early in the 20th century. In molecular orbital theory, electrons in a molec ...
, He2 should not exist, and a chemical bond cannot form between the atoms. However, the
van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and ...
exists between helium atoms as shown by the existence of
liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
, and at a certain range of distances between atoms the attraction exceeds the repulsion. So a molecule composed of two helium atoms bound by the van der Waals force can exist. The existence of this molecule was proposed as early as 1930. He2 is the largest known molecule of two atoms when in its
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
, due to its extremely long bond length. The He2 molecule has a large separation distance between the atoms of about 5200  pm (= 52
ångström The angstromEntry "angstrom" in the Oxford online dictionary. Retrieved on 2019-03-02 from https://en.oxforddictionaries.com/definition/angstrom.Entry "angstrom" in the Merriam-Webster online dictionary. Retrieved on 2019-03-02 from https://www.m ...
). This is the largest for a
diatomic molecule Diatomic molecules () are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen () or oxygen (), then it is said to be homonuclear. O ...
without ro- vibronic excitation. The
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
is only about 1.3 mK, 10−7eV or 1.1×10−5 kcal/mol,. The bond is 5000 times weaker than the covalent bond in the hydrogen molecule. Both helium atoms in the dimer can be
ionized Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
by a single
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
with energy 63.86 eV. The proposed mechanism for this double ionization is that the photon ejects an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
from one atom, and then that electron hits the other helium atom and ionizes that as well. The dimer then explodes as two helium
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
s ions repel each other with the same speed but opposite directions. A dihelium molecule bound by Van der Waals forces was first proposed by John Clarke Slater in 1928.


Formation

The helium dimer can be formed in small amounts when helium gas expands and cools as it passes through a nozzle in a gas beam. Only the isotope 4He can form molecules like this; 4He3He and 3He3He do not exist, as they do not have a stable
bound state Bound or bounds may refer to: Mathematics * Bound variable * Upper and lower bounds, observed limits of mathematical functions Physics * Bound state, a particle that has a tendency to remain localized in one or more regions of space Geography * ...
. The amount of the
dimer Dimer may refer to: * Dimer (chemistry), a chemical structure formed from two similar sub-units ** Protein dimer, a protein quaternary structure ** d-dimer * Dimer model, an item in statistical mechanics, based on ''domino tiling'' * Julius Dimer ( ...
formed in the gas beam is of the order of one percent.


Molecular ions

He2+ is a related ion bonded by a half
covalent bond A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between ato ...
. It can be formed in a helium electrical discharge. It recombines with electrons to form an electronically excited He2(''a''3Σ+''u'')
excimer An excimer (originally short for excited dimer) is a short-lived dimeric or heterodimeric molecule formed from two species, at least one of which has a valence shell completely filled with electrons (for example, noble gases). In this case, form ...
molecule. Both of these molecules are much smaller with more normally sized interatomic distances. He2+ reacts with N2, Ar, Xe, O2, and CO2 to form cations and neutral helium atoms. The helium dication dimer He22+ is extremely repulsive and would release much energy when it dissociated, around 835 kJ/mol. Dynamical stability of the ion was predicted by
Linus Pauling Linus Carl Pauling (; February 28, 1901August 19, 1994) was an American chemist, biochemist, chemical engineer, peace activist, author, and educator. He published more than 1,200 papers and books, of which about 850 dealt with scientific topi ...
. An
energy barrier In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules pe ...
of 33.2 kcal/mol prevents immediate decay. This ion is isoelectronic with the hydrogen molecule. He22+ is the smallest possible molecule with a double positive charge. It is detectable using mass spectroscopy. The negative helium dimer He2 is metastable and was discovered by Bae, Coggiola and Peterson in 1984 by passing He2+ through
cesium Caesium (IUPAC spelling) (or cesium in American English) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals that ar ...
vapor. Subsequently, H. H. Michels theoretically confirmed its existence and concluded that the 4Πg state of He2 is bound relative to the a2Σ+u state of He2. The calculated electron affinity is 0.233 eV compared to 0.077 eV for the He sup>4Pion. The He2 decays through the long-lived 5/2g component with τ~350 μsec and the much shorter-lived 3/2g, 1/2g components with τ~10 μsec. The 4Πg state has a 1σ2gugu electronic configuration, its electron affinity E is 0.18±0.03 eV, and its lifetime is 135±15 μsec; only the v=0 vibrational state is responsible for this long-lived state. The molecular helium anion is also found in liquid helium that has been excited by electrons with an energy level higher than 22 eV. This takes place firstly by penetration of liquid He, taking 1.2 eV, followed by excitation of a He atom electron to the 3P level, which takes 19.8 eV. The electron can then combine with another helium atom and the excited helium atom to form He2. He2 repels helium atoms, and so has a void around it. It will tend to migrate to the surface of liquid helium.


Excimers

In a normal helium atom two electrons are found in the 1s orbital. However, if sufficient energy is added, one electron can be elevated to a higher energy level. This high energy electron can become a valence electron, and the electron that remains in the 1s orbital is a core electron. Two excited helium atoms can react with a covalent bond to form a molecule called dihelium that lasts for short times of the order of a microsecond up to second or so. Excited helium atoms in the 23S state can last for up to an hour, and react like alkali metal atoms. The first clues that dihelium exists were noticed in 1900 when W. Heuse observed a band spectrum in a helium discharge. However, no information about the nature of the spectrum was published. Independently E. Goldstein from Germany and W. E. Curtis from London published details of the spectrum in 1913. Curtis was called away to military service in World War I, and the study of the spectrum was continued by
Alfred Fowler Alfred Fowler, CBE FRS (22 March 1868, in Yorkshire – 24 June 1940) was an English astronomer. Early life and career He was born in Wilsden on the outskirts of Bradford, Yorkshire and educated at London's Normal School of Science, w ...
. Fowler recognised that the double headed bands fell into two sequences analogous to principal and
diffuse series The diffuse series is a series of spectral lines in the atomic emission spectrum caused when electrons jump between the lowest p orbital and d orbitals of an atom. The total orbital angular momentum changes between 1 and 2. The spectral lines inclu ...
in line spectra. The emission band spectrum shows a number of bands that degrade towards the red, meaning that the lines thin out and the spectrum weakens towards the longer wavelengths. Only one band with a green band head at 5732 Å degrades towards the violet. Other strong band heads are at 6400 (red), 4649, 4626, 4546, 4157.8, 3777, 3677, 3665, 3356.5, and 3348.5 Å. There are also some headless bands and extra lines in the spectrum. Weak bands are found with heads at 5133 and 5108. If the valence electron is in a 2s 3s, or 3d orbital, a 1Σu state results; if it is in 2p 3p or 4p, a 1Σg state results. The ground state is X1Σg+. The three lowest triplet states of He2 have designations a3Σu, b3Πg and c3Σg. The a3Σu state with no vibration (''v''=0) has a long metastable lifetime of 18 s, much longer than the lifetime for other states or inert gas excimers. The explanation is that the a3Σu state has no electron orbital angular momentum, as all the electrons are in S orbitals for the helium state. The lower lying singlet states of He2 are A1Σu, B1Πg and C1Σg. The excimer molecules are much smaller and more tightly bound than the van der Waals bonded helium dimer. For the A1Σu state the binding energy is around 2.5 eV, with a separation of the atoms of 103.9 pm. The C1Σg state has a binding energy 0.643 eV and the separation between atoms is 109.1 pm. These two states have a repulsive range of distances with a maximum around 300 pm, where if the excited atoms approach, they have to overcome an energy barrier. The singlet state A1Σ+u is very unstable with a lifetime only nanoseconds long. The spectrum of the He2 excimer contains bands due to a great number of lines due to transitions between different rotation rates and vibrational states, combined with different electronic transitions. The lines can be grouped into P, Q and R branches. But the even numbered rotational levels do not have Q branch lines, due to both nuclei being spin 0. Numerous electronic states of the molecule have been studied, including
Rydberg state The Rydberg states of an atom or molecule are electronically excited states with energies that follow the Rydberg formula as they converge on an ionic state with an ionization energy. Although the Rydberg formula was developed to describe atomic e ...
s with the number of the shell up to 25. Helium discharge lamps produce
vacuum ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
radiation from helium molecules. When high energy protons hit helium gas it also produces UV emission at around 600 Å by the decay of excited highly vibrating molecules of He2 in the A1Σu state to the ground state. The UV radiation from excited helium molecules is used in the pulsed discharge ionization detector (PDHID) which is capable of detecting the contents of mixed gases at levels below parts per billion. The Hopfield continuum is a band of ultraviolet light between 600 and 1000 Å in wavelength formed by photodissociation of helium molecules. One mechanism for formation of the helium molecules is firstly a helium atom becomes excited with one electron in the 21S orbital. This excited atom meets two other non excited helium atoms in a three body association and reacts to form a A1Σu state molecule with maximum vibration and a helium atom. Helium molecules in the quintet state 5Σ+g can be formed by the reaction of two spin polarised helium atoms in He(23S1) states. This molecule has a high energy level of 20 eV. The highest vibration level allowed is v=14. In
liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
the excimer forms a solvation bubble. In a 3d state a He molecule is surrounded by a bubble 12.7 Å in radius at
atmospheric pressure Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, ...
. When pressure is increased to 24 atmospheres the bubble radius shrinks to 10.8 Å. This changing bubble size causes a shift in the fluorescence bands.


Magnetic condensation

In very strong magnetic fields, (around 750,000 Tesla) and low enough temperatures, helium atoms attract, and can even form linear chains. This may happen in white dwarfs and neutron stars. The bond length and dissociation energy both increase as the magnetic field increases.


Use

The dihelium excimer is an important component in the helium discharge lamp. A second use of dihelium ion is in ambient ionization techniques using low temperature plasma. In this helium atoms are excited, and then combine to yield the dihelium ion. The He2+ goes on to react with N2 in the air to make N2+. These ions react with a sample surface to make positive ions that are used in mass spectroscopy. The plasma containing the helium dimer can be as low as 30 °C in temperature, and this reduces heat damage to samples.


Clusters

He2 has been shown to form van der Waals compounds with other atoms forming bigger clusters such as 24MgHe2 and 40CaHe2. The helium-4 trimer (4He3), a cluster of three helium atoms, is predicted to have an excited state which is an
Efimov state The Efimov effect is an effect in the quantum mechanics of few-body systems predicted by the Russian theoretical physicist V. N. Efimov in 1970. Efimov’s effect is where three identical bosons interact, with the prediction of an infinite serie ...
. This has been confirmed experimentally in 2015.


Cage

Two helium atoms can fit inside larger fullerenes, including C70 and C84. These can be detected by the nuclear magnetic resonance of 3He having a small shift, and by mass spectrometry. C84 with enclosed helium can contain 20% He2@C84, whereas C78 has 10% and C76 has 8%. The larger cavities are more likely to hold more atoms. Even when the two helium atoms are placed closely to each other in a small cage, there is no chemical bond between them. The presence of two He atoms in a C60 fullerene cage is only predicted to have a small effect on the reactivity of the fullerene. The effect is to have electrons withdrawn from the endohedral helium atoms, giving them a slight positive
partial charge A partial charge is a non-integer charge value when measured in elementary charge units. Partial charge is more commonly called net atomic charge. It is represented by the Greek lowercase letter 𝛿, namely 𝛿− or 𝛿+. Partial charges are c ...
to produce He2δ+, which have a stronger bond than uncharged helium atoms. However, by the Löwdin definition there is a bond present. The two helium atoms inside the C60 cage are separated by 1.979 Å and the distance from a helium atom to the carbon cage is 2.507 Å. The charge transfer gives 0.011 electron charge units to each helium atom. There should be at least 10 vibrational levels for the He-He pair.


References


External links

* * * spectrum of He2 {{diatomicelements Van der Waals molecules Homonuclear diatomic molecules Helium compounds Dimers (chemistry) Allotropes