Heliosynchronous orbit
   HOME

TheInfoList



OR:

A Sun-synchronous orbit (SSO), also called a heliosynchronous orbit, is a nearly polar orbit around a planet, in which the satellite passes over any given point of the planet's surface at the same local
mean solar time Solar time is a calculation of the passage of time based on the position of the Sun in the sky. The fundamental unit of solar time is the day, based on the synodic rotation period. Two types of solar time are apparent solar time ( sundia ...
. More technically, it is an orbit arranged so that it precesses through one complete revolution each year, so it always maintains the same relationship with the Sun.


Applications

A Sun-synchronous orbit is useful for imaging,
reconnaissance In military operations, reconnaissance or scouting is the exploration of an area by military forces to obtain information about enemy forces, terrain, and other activities. Examples of reconnaissance include patrolling by troops ( skirmishe ...
, and
weather satellite A weather satellite or meteorological satellite is a type of Earth observation satellite that is primarily used to monitor the weather and climate of the Earth. Satellites can be polar orbiting (covering the entire Earth asynchronously), or ...
s, because every time that the satellite is overhead, the surface illumination angle on the planet underneath it is nearly the same. This consistent lighting is a useful characteristic for
satellite A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioiso ...
s that image the Earth's surface in visible or
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from ...
wavelengths, such as weather and spy satellites, and for other remote-sensing satellites, such as those carrying ocean and atmospheric remote-sensing instruments that require sunlight. For example, a satellite in Sun-synchronous orbit might ascend across the equator twelve times a day, each time at approximately 15:00 mean local time. Special cases of the Sun-synchronous orbit are the noon/midnight orbit, where the local mean solar time of passage for equatorial latitudes is around noon or midnight, and the dawn/dusk orbit, where the local mean solar time of passage for equatorial latitudes is around sunrise or sunset, so that the satellite rides the terminator between day and night. Riding the terminator is useful for active radar satellites, as the satellites' solar panels can always see the Sun, without being shadowed by the Earth. It is also useful for some satellites with passive instruments that need to limit the Sun's influence on the measurements, as it is possible to always point the instruments towards the night side of the Earth. The dawn/dusk orbit has been used for solar-observing scientific satellites such as TRACE, Hinode and PROBA-2, affording them a nearly continuous view of the Sun.


Orbital precession

A Sun-synchronous orbit is achieved by having the osculating orbital plane precess (rotate) approximately one degree eastward each day with respect to the
celestial sphere In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphe ...
to keep pace with the Earth's movement around the Sun. This precession is achieved by tuning the inclination to the altitude of the orbit (see Technical details) such that Earth's equatorial bulge, which perturbs inclined orbits, causes the orbital plane of the spacecraft to precess with the desired rate. The plane of the orbit is not fixed in space relative to the distant stars, but rotates slowly about the Earth's axis. Typical Sun-synchronous orbits around Earth are about in altitude, with periods in the 96–100-
minute The minute is a unit of time usually equal to (the first sexagesimal fraction) of an hour, or 60 seconds. In the UTC time standard, a minute on rare occasions has 61 seconds, a consequence of leap seconds (there is a provision to insert a neg ...
range, and inclinations of around 98°. This is slightly retrograde compared to the direction of Earth's rotation: 0° represents an equatorial orbit, and 90° represents a polar orbit. Sun-synchronous orbits are possible around other oblate planets, such as
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
. A satellite orbiting a planet such as
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never f ...
that is almost spherical will need an outside push to maintain a Sun-synchronous orbit.


Technical details

The angular precession per orbit for an Earth orbiting satellite is given by : \Delta \Omega = -3\pi \frac \cos i, where : is the coefficient for the second zonal term related to the oblateness of the Earth, : is the mean radius of the Earth, : is the
semi-latus rectum In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a sp ...
of the orbit, : is the inclination of the orbit to the equator. An orbit will be Sun-synchronous when the precession rate equals the mean motion of the Earth about the Sun, which is 360° per sidereal year (), so we must set , where is the orbital period. As the orbital period of a spacecraft is : T = 2\pi \sqrt, where is the semi-major axis of the orbit, and is the
standard gravitational parameter In celestial mechanics, the standard gravitational parameter ''μ'' of a celestial body is the product of the gravitational constant ''G'' and the mass ''M'' of the bodies. For two bodies the parameter may be expressed as G(m1+m2), or as GM whe ...
of the planet ( for Earth); as for a circular or almost circular orbit, it follows that : \begin \rho &\approx -\frac \\ &= -(360^\circ\text) \times \left(\frac\right)^ \cos i \\ &= -(360^\circ\text) \times \left(\frac\right)^ \cos i, \end or when is 360° per year, : \cos i \approx -\frac a^ = -\left(\frac\right)^ = -\left(\frac\right)^. As an example, with = , i.e., for an altitude ≈ of the spacecraft over Earth's surface, this formula gives a Sun-synchronous inclination of 98.7°. Note that according to this approximation equals −1 when the semi-major axis equals , which means that only lower orbits can be Sun-synchronous. The period can be in the range from 88 minutes for a very low orbit ( = , = 96°) to 3.8 hours ( = , but this orbit would be equatorial, with = 180°). A period longer than 3.8 hours may be possible by using an eccentric orbit with < but > . If one wants a satellite to fly over some given spot on Earth every day at the same hour, the satellite must complete a whole number of orbits per day. Assuming a circular orbit, this comes down to between 7 and 16 orbits per day, as doing less than 7 orbits would require an altitude above the maximum for a Sun-synchronous orbit, and doing more than 16 would require an orbit inside the Earth's atmosphere or surface. The resulting valid orbits are shown in the following table. (The table has been calculated assuming the periods given. The orbital period that should be used is actually slightly longer. For instance, a retrograde equatorial orbit that passes over the same spot after 24 hours has a true period about ≈ 1.0027 times longer than the time between overpasses. For non-equatorial orbits the factor is closer to 1.) : When one says that a Sun-synchronous orbit goes over a spot on the Earth at the same ''local time'' each time, this refers to
mean solar time Solar time is a calculation of the passage of time based on the position of the Sun in the sky. The fundamental unit of solar time is the day, based on the synodic rotation period. Two types of solar time are apparent solar time ( sundia ...
, not to apparent solar time. The Sun will not be in exactly the same position in the sky during the course of the year (see Equation of time and
Analemma In astronomy, an analemma (; ) is a diagram showing the position of the Sun in the sky as seen from a fixed location on Earth at the same mean solar time, as that position varies over the course of a year. The diagram will resemble a figur ...
). Sun-synchronous orbits are mostly selected for Earth observation satellites, with an altitude typically between 600 and over the Earth surface. Even if an orbit remains Sun-synchronous, however, other orbital parameters such as argument of periapsis and the
orbital eccentricity In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values bet ...
evolve, due to higher-order perturbations in the Earth's gravitational field, the pressure of sunlight, and other causes. Earth observation satellites, in particular, prefer orbits with constant altitude when passing over the same spot. Careful selection of eccentricity and location of perigee reveals specific combinations where the rate of change of perturbations are minimized, and hence the orbit is relatively stable a
frozen orbit In orbital mechanics, a frozen orbit is an orbit for an artificial satellite in which natural drifting due to the central body's shape has been minimized by careful selection of the orbital parameters. Typically, this is an orbit in which, over ...
, where the motion of position of the periapsis is stable. The ERS-1, ERS-2 and
Envisat Envisat ("Environmental Satellite") is a large inactive Earth-observing satellite which is still in orbit and now considered space debris. Operated by the European Space Agency (ESA), it was the world's largest civilian Earth observation satell ...
of
European Space Agency , owners = , headquarters = Paris, Île-de-France, France , coordinates = , spaceport = Guiana Space Centre , seal = File:ESA emblem seal.png , seal_size = 130px , image = Views in the Main Control Room (120 ...
, as well as the MetOp spacecraft of EUMETSAT and RADARSAT-2 of the
Canadian Space Agency The Canadian Space Agency (CSA; french: Agence spatiale canadienne, ASC) is the national space agency of Canada, established in 1990 by the ''Canadian Space Agency Act''. The president is Lisa Campbell, who took the position on September 3, 202 ...
, are all operated in such Sun-synchronous frozen orbits.


See also

*
Orbital perturbation analysis (spacecraft) In astronomy, perturbation is the complex motion of a massive body subjected to forces other than the gravitational attraction of a single other massive body. The other forces can include a third (fourth, fifth, etc.) body, resistance, as from ...
*
Analemma In astronomy, an analemma (; ) is a diagram showing the position of the Sun in the sky as seen from a fixed location on Earth at the same mean solar time, as that position varies over the course of a year. The diagram will resemble a figur ...
* Geosynchronous orbit *
Geostationary orbit A geostationary orbit, also referred to as a geosynchronous equatorial orbit''Geostationary orbit'' and ''Geosynchronous (equatorial) orbit'' are used somewhat interchangeably in sources. (GEO), is a circular geosynchronous orbit in altitu ...
* List of orbits * Polar orbit *
World Geodetic System The World Geodetic System (WGS) is a standard used in cartography, geodesy, and satellite navigation including GPS. The current version, WGS 84, defines an Earth-centered, Earth-fixed coordinate system and a geodetic datum, and also descr ...


References


Further reading


Sandwell, David T., The Gravity Field of the Earth - Part 1 (2002)
(p. 8)

from U.S. Centennial of Flight Commission

*


External links


List of satellites in Sun-synchronous orbit
{{Portal bar, Physics, Mathematics, Astronomy, Stars, Spaceflight, Outer space, Solar System, Science Earth orbits Satellites in low Earth orbit