Hassium
   HOME

TheInfoList



OR:

Hassium is a
chemical element A chemical element is a species of atoms that have a given number of protons in their atomic nucleus, nuclei, including the pure Chemical substance, substance consisting only of that species. Unlike chemical compounds, chemical elements canno ...
with the
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
Hs and the
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of ever ...
108. Hassium is highly
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
; its most stable known
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass num ...
s have
half-lives Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
of approximately ten seconds. One of its isotopes, 270Hs, has magic numbers of both
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
s for deformed nuclei, which gives it greater stability against
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakd ...
. Hassium is a superheavy element; it has been produced in a laboratory only in very small quantities by fusing heavy nuclei with lighter ones. Natural occurrences of the element have been hypothesised but never found. In the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
of elements, hassium is a
transactinide element Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, are the chemical elements with atomic number greater than 103. The superheavy elements are those beyond the actinides in the periodic table; the l ...
, a member of the 7th period and
group 8 Group 8 may refer to: * Group 8 element, a series of elements in the Periodic Table * Group 8 Rugby League, a rugby league competition * Group 8 (Sweden), a feminist movement in Sweden * Group VIII, former nomenclature for the noble gas The n ...
; it is thus the sixth member of the 6d series of
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
s. Chemistry experiments have confirmed that hassium behaves as the heavier homologue to
osmium Osmium (from Greek grc, ὀσμή, osme, smell, label=none) is a chemical element with the symbol Os and atomic number 76. It is a hard, brittle, bluish-white transition metal in the platinum group that is found as a trace element in alloys, ...
, reacting readily with oxygen to form a volatile tetroxide. The chemical properties of hassium have been only partly characterized, but they compare well with the
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the elements that make up matter to the compounds made of atoms, molecules and ions: their composition, structure, proper ...
of the other group 8 elements. The principal innovation that led to the discovery of hassium was the technique of cold fusion, in which the fused nuclei did not differ by mass as much as in earlier techniques. It relied on greater stability of target nuclei, which in turn decreased excitation energy. This decreased the number of neutron ejections during synthesis, creating heavier, more stable resulting nuclei. The technique was first tested at the
Joint Institute for Nuclear Research The Joint Institute for Nuclear Research (JINR, russian: Объединённый институт ядерных исследований, ОИЯИ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research c ...
(JINR) in
Dubna Dubna ( rus, Дубна́, p=dʊbˈna) is a town in Moscow Oblast, Russia. It has a status of ''naukograd'' (i.e. town of science), being home to the Joint Institute for Nuclear Research, an international nuclear physics research center and one o ...
,
Moscow Oblast Moscow Oblast ( rus, Моско́вская о́бласть, r=Moskovskaya oblast', p=mɐˈskofskəjə ˈobləsʲtʲ), or Podmoskovye ( rus, Подмоско́вье, p=pədmɐˈskovʲjə, literally " under Moscow"), is a federal subject of R ...
,
Russian SFSR The Russian Soviet Federative Socialist Republic, Russian SFSR or RSFSR ( rus, Российская Советская Федеративная Социалистическая Республика, Rossíyskaya Sovétskaya Federatívnaya Soci ...
,
Soviet Union The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen nationa ...
, in 1974. JINR used this technique to attempt synthesis of element 108 in 1978, in 1983, and in 1984; the latter experiment resulted in a claim that element 108 had been produced. Later in 1984, a synthesis claim followed from the
Gesellschaft für Schwerionenforschung The GSI Helmholtz Centre for Heavy Ion Research (german: GSI Helmholtzzentrum für Schwerionenforschung) is a federally and state co-funded heavy ion () research center in the Wixhausen suburb of Darmstadt, Germany. It was founded in 1969 as th ...
(GSI) in
Darmstadt Darmstadt () is a city in the state of Hesse in Germany, located in the southern part of the Rhine-Main-Area (Frankfurt Metropolitan Region). Darmstadt has around 160,000 inhabitants, making it the fourth largest city in the state of Hesse ...
,
Hesse Hesse (, , ) or Hessia (, ; german: Hessen ), officially the State of Hessen (german: links=no, Land Hessen), is a state in Germany. Its capital city is Wiesbaden, and the largest urban area is Frankfurt. Two other major historic cities are ...
,
West Germany West Germany is the colloquial term used to indicate the Federal Republic of Germany (FRG; german: Bundesrepublik Deutschland , BRD) between its formation on 23 May 1949 and the German reunification through the accession of East Germany on 3 ...
. The 1993 report by the Transfermium Working Group, formed by the
International Union of Pure and Applied Chemistry The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
and the
International Union of Pure and Applied Physics The International Union of Pure and Applied Physics (IUPAP ) is an international non-governmental organization whose mission is to assist in the worldwide development of physics, to foster international cooperation in physics, and to help in the ...
, concluded that the report from Darmstadt was conclusive on its own whereas that from Dubna was not, and major credit was assigned to the German scientists. GSI formally announced they wished to name the element ''hassium'' after the German state of Hesse (Hassia in Latin) home to the facility in 1992; this name was accepted as final in 1997.


Introduction to the heaviest elements


Discovery


Cold fusion

Nuclear reactions used in the 1960s resulted in high excitation energies that required expulsion of four or five neutrons; these reactions used targets made of elements with high atomic numbers to maximize the size difference between the two nuclei in a reaction. While this increased the chance of fusion due to the lower electrostatic repulsion between the target and the projectile, the formed compound nuclei often broke apart and did not survive to form a new element. Moreover, fusion processes inevitably produce neutron-poor nuclei, as heavier elements require more neutrons per proton to maximize stability; therefore, the necessary ejection of neutrons results in final products with typically have shorter lifetimes. As such, light beams (six to ten protons) allowed synthesis of elements only up to 106. To advance to heavier elements, Soviet physicist Yuri Oganessian at the
Joint Institute for Nuclear Research The Joint Institute for Nuclear Research (JINR, russian: Объединённый институт ядерных исследований, ОИЯИ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research c ...
(JINR) in
Dubna Dubna ( rus, Дубна́, p=dʊbˈna) is a town in Moscow Oblast, Russia. It has a status of ''naukograd'' (i.e. town of science), being home to the Joint Institute for Nuclear Research, an international nuclear physics research center and one o ...
,
Moscow Oblast Moscow Oblast ( rus, Моско́вская о́бласть, r=Moskovskaya oblast', p=mɐˈskofskəjə ˈobləsʲtʲ), or Podmoskovye ( rus, Подмоско́вье, p=pədmɐˈskovʲjə, literally " under Moscow"), is a federal subject of R ...
,
Russian SFSR The Russian Soviet Federative Socialist Republic, Russian SFSR or RSFSR ( rus, Российская Советская Федеративная Социалистическая Республика, Rossíyskaya Sovétskaya Federatívnaya Soci ...
,
Soviet Union The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen nationa ...
, proposed a different mechanism, in which the bombarded nucleus would be lead-208, which has magic numbers of protons and neutrons, or another nucleus close to it. Each proton and neutron has a fixed value of
rest energy The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
; those of all protons are equal and so are those of all neutrons. In a nucleus, some of this energy is diverted to binding protons and neutrons; if a nucleus has a magic number of protons and/or neutrons, then even more of its rest energy is diverted, which gives the nuclide additional stability. This additional stability requires more energy for an external nucleus to break the existing one and penetrate it. More energy diverted to binding nucleons means less rest energy, which in turn means less mass (mass is proportional to rest energy). More equal atomic numbers of the reacting nuclei result in greater electrostatic repulsion between them, but the lower
mass excess The mass excess of a nuclide is the difference between its actual mass and its mass number in dalton (unit), daltons. It is one of the predominant methods for tabulating nuclear mass. The mass of an atomic nucleus is well approximated (less than 0.1 ...
of the target nucleus balances it. This leaves less excitation energy for the newly created compound nucleus, which necessitates fewer neutron ejections to reach a stable state. Because of this energy difference, the former mechanism became known as "hot fusion" and the latter as "cold fusion". Cold fusion was first declared successful in 1974 at JINR, when it was tested for synthesis of the yet-undiscovered element106. These new nuclei were projected to decay via spontaneous fission. The physicists at JINR concluded element 106 was produced in the experiment because no fissioning nucleus known at the time showed parameters of fission similar to what was observed during the experiment and because changing either of the two nuclei in the reactions negated the observed effects. Physicists at the Lawrence Berkeley Laboratory (LBL; originally Radiation Laboratory, RL, and later
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory (LBNL), commonly referred to as the Berkeley Lab, is a United States national laboratory that is owned by, and conducts scientific research on behalf of, the United States Department of Energy. Located in ...
, LBNL) of the
University of California The University of California (UC) is a public land-grant research university system in the U.S. state of California. The system is composed of the campuses at Berkeley, Davis, University of California, Irvine, Irvine, University of Califor ...
in Berkeley,
California California is a state in the Western United States, located along the Pacific Coast. With nearly 39.2million residents across a total area of approximately , it is the most populous U.S. state and the 3rd largest by area. It is also the m ...
, United States, also expressed great interest in the new technique. When asked about how far this new method could go and if lead targets were a physics' Klondike, Oganessian responded, "Klondike may be an exaggeration ..But soon, we will try to get elements 107... 108 in these reactions."


Reports

The synthesis of element108 was first attempted in 1978 by a research team led by Oganessian at the JINR. The team used a reaction that would generate element108, specifically, the isotope 270108, from fusion of
radium Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rat ...
(specifically, the isotope and
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
. The researchers were uncertain in interpreting their data, and their paper did not unambiguously claim to have discovered the element. The same year, another team at JINR investigated the possibility of synthesis of element108 in reactions between
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
and
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
; they were uncertain in interpreting the data, suggesting the possibility that element108 had not been created. In 1983, new experiments were performed at JINR. The experiments probably resulted in the synthesis of element108;
bismuth Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs ...
was bombarded with
manganese Manganese is a chemical element with the Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of ...
to obtain 263108, lead , was bombarded with iron to obtain 264108, and
californium Californium is a radioactive chemical element with the symbol Cf and atomic number 98. The element was first synthesized in 1950 at Lawrence Berkeley National Laboratory (then the University of California Radiation Laboratory), by bombarding c ...
was bombarded with
neon Neon is a chemical element with the symbol Ne and atomic number 10. It is a noble gas. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered (along with krypt ...
to obtain 270108. These experiments were not claimed as a discovery and Oganessian announced them in a conference rather than in a written report. In 1984, JINR researchers in Dubna performed experiments set up identically to the previous ones; they bombarded bismuth and lead targets with ions of lighter elements manganese and iron, respectively. Twenty-one spontaneous fission events were recorded; the researchers concluded they were caused by 264108. Later in 1984, a research team led by Peter Armbruster and
Gottfried Münzenberg Gottfried Münzenberg (born 17 March 1940) is a German physicist. He studied physics at Justus-Liebig-Universität in Giessen and Leopold-Franzens-Universität Innsbruck and completed his studies with a Ph.D. at the University of Giessen, ...
at
Gesellschaft für Schwerionenforschung The GSI Helmholtz Centre for Heavy Ion Research (german: GSI Helmholtzzentrum für Schwerionenforschung) is a federally and state co-funded heavy ion () research center in the Wixhausen suburb of Darmstadt, Germany. It was founded in 1969 as th ...
(GSI; ''Institute for Heavy Ion Research'') in
Darmstadt Darmstadt () is a city in the state of Hesse in Germany, located in the southern part of the Rhine-Main-Area (Frankfurt Metropolitan Region). Darmstadt has around 160,000 inhabitants, making it the fourth largest city in the state of Hesse ...
,
Hesse Hesse (, , ) or Hessia (, ; german: Hessen ), officially the State of Hessen (german: links=no, Land Hessen), is a state in Germany. Its capital city is Wiesbaden, and the largest urban area is Frankfurt. Two other major historic cities are ...
,
West Germany West Germany is the colloquial term used to indicate the Federal Republic of Germany (FRG; german: Bundesrepublik Deutschland , BRD) between its formation on 23 May 1949 and the German reunification through the accession of East Germany on 3 ...
, attempted to create element108. The team bombarded a lead target with accelerated iron nuclei. GSI's experiment to create element108 was delayed until after their creation of element109 in 1982, as prior calculations had suggested that even–even isotopes of element108 would have spontaneous fission half-lives of less than one
microsecond A microsecond is a unit of time in the International System of Units (SI) equal to one millionth (0.000001 or 10−6 or ) of a second. Its symbol is μs, sometimes simplified to us when Unicode is not available. A microsecond is equal to 1000 ...
, making them difficult to detect and identify. The element108 experiment finally went ahead after 266109 had been synthesized and was found to decay by alpha emission, suggesting that isotopes of element108 would do likewise, and this was corroborated by an experiment aimed at synthesizing isotopes of element106. GSI reported synthesis of three atoms of 265108. Two years later, they reported synthesis of one atom of the even–even 264108.


Arbitration

In 1985, the
International Union of Pure and Applied Chemistry The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
(IUPAC) and the
International Union of Pure and Applied Physics The International Union of Pure and Applied Physics (IUPAP ) is an international non-governmental organization whose mission is to assist in the worldwide development of physics, to foster international cooperation in physics, and to help in the ...
(IUPAP) formed the Transfermium Working Group (TWG) to assess discoveries and establish final names for elements with atomic numbers greater than 100. The party held meetings with delegates from the three competing institutes; in 1990, they established criteria for recognition of an element and in 1991, they finished the work of assessing discoveries and disbanded. These results were published in 1993. According to the report, the 1984 works from JINR and GSI simultaneously and independently established synthesis of element108. Of the two 1984 works, the one from GSI was said to be sufficient as a discovery on its own. The JINR work, which preceded the GSI one, "very probably" displayed synthesis of element108. However, that was determined in retrospect given the work from Darmstadt; the JINR work focused on chemically identifying remote granddaughters of element108 isotopes (which could not exclude the possibility that these daughter isotopes had other progenitors), while the GSI work clearly identified the decay path of those element108 isotopes. The report concluded that the major credit should be awarded to GSI. In written responses to this ruling, both JINR and GSI agreed with its conclusions. In the same response, GSI confirmed that they and JINR were able to resolve all conflicts between them.


Naming

Historically, a newly discovered element was named by its discoverer. The first regulation came in 1947, when IUPAC decided naming required regulation in case there are conflicting names. These matters were to be resolved by the Commission of Inorganic Nomenclature and the Commission of Atomic Weights. They would review the names in case of a conflict and select one; the decision would be based on a number of factors, such as usage, and would not be an indicator of priority of a claim. The two commissions would recommend a name to the IUPAC Council, which would be the final authority. The discoverers held the right to name an element, but their name would be subject to approval by IUPAC. The Commission of Atomic Weights distanced itself from element naming in most cases. Under Mendeleev's nomenclature for unnamed and undiscovered elements, hassium would be known as "eka-
osmium Osmium (from Greek grc, ὀσμή, osme, smell, label=none) is a chemical element with the symbol Os and atomic number 76. It is a hard, brittle, bluish-white transition metal in the platinum group that is found as a trace element in alloys, ...
", as in "the first element below osmium in the periodic table" (from
Sanskrit Sanskrit (; attributively , ; nominally , , ) is a classical language belonging to the Indo-Aryan languages, Indo-Aryan branch of the Indo-European languages. It arose in South Asia after its predecessor languages had Trans-cultural diffusion ...
''eka'' meaning "one"). In 1979, IUPAC published recommendations according to which the element was to be called "unniloctium" and assigned the corresponding symbol of "Uno", a systematic element name as a
placeholder Placeholder may refer to: Language * Placeholder name, a term or terms referring to something or somebody whose name is not known or, in that particular context, is not significant or relevant. * Filler text, text generated to fill space or provi ...
until the element was discovered and the discovery then confirmed, and a permanent name was decided. Although these recommendations were widely followed in the chemical community, the competing physicists in the field ignored them. They either called it "element108", with the symbols ''E108'', ''(108)'' or ''108'', or used the proposed name "hassium". In 1990, in an attempt to break a deadlock in establishing priority of discovery and naming of several elements, IUPAC reaffirmed in its nomenclature of inorganic chemistry that after existence of an element was established, the discoverers could propose a name. (In addition, the Commission of Atomic Weights was excluded from the naming process.) The first publication on criteria for an element discovery, released in 1991, specified the need for recognition by TWG. Armbruster and his colleagues, the officially recognized German discoverers, held a naming ceremony for the elements 107 through 109, which had all been recognized as discovered by GSI, on 7September 1992. For element108, the scientists proposed the name "hassium". It is derived from the
Latin Latin (, or , ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through ...
name ''Hassia'' for the German state of Hesse where the institute is located. This name was proposed to IUPAC in a written response to their ruling on priority of discovery claims of elements, signed 29 September 1992. The process of naming of element 108 was a part of a larger process of naming a number of elements starting with element 101; three teams—JINR, GSI, and LBL—claimed discoveries of several elements and the right to name those elements. Sometimes, these claims clashed; since a discoverer was considered entitled to naming of an element, conflicts over priority of discovery often resulted in conflicts over names of these new elements. These conflicts became known as the Transfermium Wars. Different suggestions to name the whole set of elements from 101 onward and they occasionally assigned names suggested by one team to be used for elements discovered by another. However, not all suggestions were met with equal approval; the teams openly protested naming proposals on several occasions. In 1994, IUPAC Commission on Nomenclature of Inorganic Chemistry recommended that element108 be named "hahnium" (Hn) after the German physicist
Otto Hahn Otto Hahn (; 8 March 1879 – 28 July 1968) was a German chemist who was a pioneer in the fields of radioactivity and radiochemistry. He is referred to as the father of nuclear chemistry and father of nuclear fission. Hahn and Lise Meitner ...
so elements named after Hahn and
Lise Meitner Elise Meitner ( , ; 7 November 1878 – 27 October 1968) was an Austrian-Swedish physicist who was one of those responsible for the discovery of the element protactinium and nuclear fission. While working at the Kaiser Wilhelm Institute on r ...
(it was recommended element109 should be named meitnerium, following GSI's suggestion) would be next to each other, honouring their joint discovery of nuclear fission; IUPAC commented that they felt the German suggestion was obscure. GSI protested, saying this proposal contradicted the long-standing convention of giving the discoverer the right to suggest a name; the
American Chemical Society The American Chemical Society (ACS) is a scientific society based in the United States that supports scientific inquiry in the field of chemistry. Founded in 1876 at New York University, the ACS currently has more than 155,000 members at all ...
supported GSI. The name "hahnium", albeit with the different symbol Ha, had already been proposed and used by the American scientists for element105, for which they had a discovery dispute with JINR; they thus protested the confusing scrambling of names. Following the uproar, IUPAC formed an ad hoc committee of representatives from the national adhering organizations of the three countries home to the competing institutions; they produced a new set of names in 1995. Element108 was again named ''hahnium''; this proposal was also retracted. The final compromise was reached in 1996 and published in 1997; element108 was named ''hassium'' (Hs). Simultaneously, the name ''dubnium'' (Db; from Dubna, the JINR location) was assigned to element105, and the name ''hahnium'' was not used for any element. The official justification for this naming, alongside that of darmstadtium for element110, was that it completed a set of geographic names for the location of the GSI; this set had been initiated by 19th-century names
europium Europium is a chemical element with the symbol Eu and atomic number 63. Europium is the most reactive lanthanide by far, having to be stored under an inert fluid to protect it from atmospheric oxygen or moisture. Europium is also the softest lan ...
and
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors ...
. This set would serve as a response to earlier naming of
americium Americium is a synthetic radioactive chemical element with the symbol Am and atomic number 95. It is a transuranic member of the actinide series, in the periodic table located under the lanthanide element europium, and thus by analogy was n ...
, californium, and
berkelium Berkelium is a transuranic radioactive chemical element with the symbol Bk and atomic number 97. It is a member of the actinide and transuranium element series. It is named after the city of Berkeley, California, the location of the Lawrence B ...
for elements discovered in Berkeley. Armbruster commented on this, "this bad tradition was established by Berkeley. We wanted to do it for Europe." Later, when commenting on the naming of element112, Armbruster said, "I did everything to ensure that we do not continue with German scientists and German towns."


Isotopes

Hassium has no stable or naturally occurring isotopes. Several radioactive isotopes have been synthesized in the laboratory, either by fusing two atoms or by observing the decay of heavier elements. As of 2019, the quantity of all hassium ever produced was on the order of hundreds of atoms. Thirteen isotopes with mass numbers ranging from 263 to 277 (with the exceptions of 274 and 276) have been reported, four of which—hassium-265, -266, -267, and -277—have known
metastable state In chemistry and physics, metastability denotes an intermediate energetic state within a dynamical system other than the system's state of least energy. A ball resting in a hollow on a slope is a simple example of metastability. If the ball ...
s, although that of hassium-277 is unconfirmed. Most of these isotopes decay predominantly through alpha decay; this is the most common for all isotopes for which comprehensive decay characteristics are available, the only exception being hassium-277, which undergoes spontaneous fission. Lighter isotopes were usually synthesized by direct fusion between two lighter nuclei, whereas heavier isotopes were typically observed as decay products of nuclei with larger atomic numbers. Atomic nuclei have well-established nuclear shells, and the existence of these shells provides nuclei with additional stability. If a nucleus has certain numbers of protons or neutrons, called magic numbers, that complete certain nuclear shells, then the nucleus is even more stable against decay. The highest known magic numbers are 82 for protons and 126 for neutrons. This notion is sometimes expanded to include additional numbers between those magic numbers, which also provide some additional stability and indicate closure of "sub-shells". In contrast to the better-known lighter nuclei, superheavy nuclei are deformed. Until the 1960s, the
liquid drop model In nuclear physics, the semi-empirical mass formula (SEMF) (sometimes also called the Weizsäcker formula, Bethe–Weizsäcker formula, or Bethe–Weizsäcker mass formula to distinguish it from the Bethe–Weizsäcker process) is used to approxi ...
was the dominant explanation for nuclear structure. It suggested that the
fission barrier In nuclear physics and nuclear chemistry, the fission barrier is the activation energy required for a nucleus of an atom to undergo fission. This barrier may also be defined as the minimum amount of energy required to deform the nucleus to the p ...
would disappear for nuclei with about 280nucleons. It was thus thought that spontaneous fission would occur nearly instantly before nuclei could form a structure that could stabilize them; it appeared that nuclei with Z≈103 were too heavy to exist for a considerable length of time. The later
nuclear shell model In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model is a model of the atomic nucleus which uses the Pauli exclusion principle to describe the structure of the nucleus in terms of energy levels. The first shell ...
suggested that nuclei with about three hundred nucleons would form an island of stability in which nuclei will be more resistant to spontaneous fission and will primarily undergo alpha decay with longer half-lives, and the next doubly magic nucleus (having magic numbers of both protons and neutrons) is expected to lie in the center of the island of stability in the vicinity of ''Z''=110–114 and the predicted magic neutron number ''N''=184. Subsequent discoveries suggested that the predicted island might be further than originally anticipated; they also showed that nuclei intermediate between the long-lived actinides and the predicted island are deformed, and gain additional stability from shell effects. The addition to the stability against the spontaneous fission should be particularly great against spontaneous fission, although increase in stability against the alpha decay would also be pronounced. The center of the region on a chart of nuclides that would correspond to this stability for deformed nuclei was determined as 270Hs, with 108 expected to be a magic number for protons for deformed nuclei—nuclei that are far from spherical—and 162 a magic number for neutrons for such nuclei. Experiments on lighter superheavy nuclei, as well as those closer to the expected island, have shown greater than previously anticipated stability against spontaneous fission, showing the importance of shell effects on nuclei. Theoretical models predict a region of instability for some hassium isotopes to lie around ''A''=275 and ''N''=168–170, which is between the predicted neutron shell closures at ''N''=162 for deformed nuclei and ''N''=184 for spherical nuclei. Nuclides within this region are predicted to have low fission barrier heights, resulting in short partial half-lives toward spontaneous fission. This prediction is supported by the observed eleven-millisecond half-life of 277Hs and the five-millisecond half-life of the neighbouring isobar 277Mt because the hindrance factors from the odd nucleon were shown to be much lower than otherwise expected. The measured half-lives are even lower than those originally predicted for the even–even 276Hs and 278Ds, which suggests a gap in stability away from the shell closures and perhaps a weakening of the shell closures in this region. In 1991, Polish physicists Zygmunt Patyk and Adam Sobiczewski predicted that 108 is a proton magic number for deformed nuclei and 162 is a neutron magic number for such nuclei. This means such nuclei are permanently deformed in their ground state but have high, narrow fission barriers to further deformation and hence relatively long life-times toward spontaneous fission. Computational prospects for shell stabilization for 270Hs made it a promising candidate for a deformed doubly magic nucleus. Experimental data is scarce, but the existing data is interpreted by the researchers to support the assignment of ''N''=162 as a magic number. In particular, this conclusion was drawn from the decay data of 269Hs, 270Hs, and 271Hs. In 1997, Polish physicist Robert Smolańczuk calculated that the isotope 292Hs may be the most stable superheavy nucleus against alpha decay and spontaneous fission as a consequence of the predicted ''N''=184 shell closure.


Natural occurrence

Hassium is not known to occur naturally on Earth; the
half-lives Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
of all its known isotopes are short enough that no
primordial Primordial may refer to: * Primordial era, an era after the Big Bang. See Chronology of the universe * Primordial sea (a.k.a. primordial ocean, ooze or soup). See Abiogenesis * Primordial nuclide, nuclides, a few radioactive, that formed before t ...
hassium would have survived to the present day. This does not rule out the possibility of the existence of unknown, longer-lived isotopes or
nuclear isomer A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy higher energy levels than in the ground state of the same nucleus. "Metastable" describes nuclei whose excited states have ...
s, some of which could still exist in trace quantities if they are long-lived enough. As early as 1914, German physicist
Richard Swinne Richard is a male given name. It originates, via Old French, from Old Frankish and is a compound of the words descending from Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'stron ...
proposed element108 as a source of
X-rays An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10 nanometers, corresponding to frequencies in the range 30&nbs ...
in the
Greenland ice sheet The Greenland ice sheet ( da, Grønlands indlandsis, kl, Sermersuaq) is a vast body of ice covering , roughly near 80% of the surface of Greenland. It is sometimes referred to as an ice cap, or under the term ''inland ice'', or its Danish equi ...
. Although Swinne was unable to verify this observation and thus did not claim discovery, he proposed in 1931 the existence of "regions" of long-lived transuranic elements, including one around ''Z''=108. In 1963, Soviet geologist and physicist Viktor Cherdyntsev, who had previously claimed the existence of primordial
curium Curium is a transuranic, radioactive chemical element with the symbol Cm and atomic number 96. This actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first in ...
-247, claimed to have discovered element108—specifically the 267108 isotope, which supposedly had a half-life of 400 to 500million years—in natural
molybdenite Molybdenite is a mineral of molybdenum disulfide, Mo S2. Similar in appearance and feel to graphite, molybdenite has a lubricating effect that is a consequence of its layered structure. The atomic structure consists of a sheet of molybdenum ato ...
and suggested the provisional name ''sergenium'' (symbol Sg); this name takes its origin from the name for the
Silk Road The Silk Road () was a network of Eurasian trade routes active from the second century BCE until the mid-15th century. Spanning over 6,400 kilometers (4,000 miles), it played a central role in facilitating economic, cultural, political, and rel ...
and was explained as "coming from
Kazakhstan Kazakhstan, officially the Republic of Kazakhstan, is a transcontinental country located mainly in Central Asia and partly in Eastern Europe. It borders Russia to the north and west, China to the east, Kyrgyzstan to the southeast, Uzbeki ...
" for it. His rationale for claiming that sergenium was the heavier homologue to osmium was that minerals supposedly containing sergenium formed volatile oxides when boiled in
nitric acid Nitric acid is the inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but older samples tend to be yellow cast due to decomposition into oxides of nitrogen. Most commercially available ni ...
, similarly to osmium. Cherdyntsev's findings were criticized by Soviet physicist Vladimir Kulakov on the grounds that some of the properties Cherdyntsev claimed sergenium had were inconsistent with the then-current nuclear physics. The chief questions raised by Kulakov were that the claimed alpha decay energy of sergenium was many orders of magnitude lower than expected and the half-life given was eight orders of magnitude shorter than what would be predicted for a nuclide alpha-decaying with the claimed decay energy. At the same time, a corrected half-life in the region of 1016years would be impossible because it would imply the samples contained about a hundred milligrams of sergenium. In 2003, it was suggested that the observed alpha decay with energy 4.5 MeV could be due to a low-energy and strongly enhanced transition between different hyperdeformed states of a hassium isotope around 271Hs, thus suggesting that the existence of superheavy elements in nature was at least possible, although unlikely. In 2006, Russian geologist Alexei Ivanov hypothesized that an isomer of 271Hs might have a half-life of around years, which would explain the observation of alpha particles with energies of around 4.4MeV in some samples of molybdenite and
osmiridium Osmiridium and iridosmine are natural alloys of the elements osmium and iridium, with traces of other platinum-group metals. Osmiridium has been defined as containing a higher proportion of iridium, with iridosmine containing more osmium. However ...
. This isomer of 271Hs could be produced from the
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
of 271Bh and 271Sg, which, being homologous to
rhenium Rhenium is a chemical element with the symbol Re and atomic number 75. It is a silvery-gray, heavy, third-row transition metal in group 7 of the periodic table. With an estimated average concentration of 1 part per billion (ppb), rhenium is one ...
and molybdenum respectively, should occur in molybdenite along with rhenium and molybdenum if they occurred in nature. Because hassium is homologous to osmium, it should occur along with osmium in osmiridium if it occurs in nature. The decay chains of 271Bh and 271Sg are hypothetical and the predicted half-life of this hypothetical hassium isomer is not long enough for any sufficient quantity to remain on Earth. It is possible that more 271Hs may be deposited on the Earth as the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
travels through the spiral arms of the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
; this would explain excesses of
plutonium-239 Plutonium-239 (239Pu or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three mai ...
found on the ocean floors of the
Pacific Ocean The Pacific Ocean is the largest and deepest of Earth's five oceanic divisions. It extends from the Arctic Ocean in the north to the Southern Ocean (or, depending on definition, to Antarctica) in the south, and is bounded by the conti ...
and the
Gulf of Finland The Gulf of Finland ( fi, Suomenlahti; et, Soome laht; rus, Фи́нский зали́в, r=Finskiy zaliv, p=ˈfʲinskʲɪj zɐˈlʲif; sv, Finska viken) is the easternmost arm of the Baltic Sea. It extends between Finland to the north and ...
. However, minerals enriched with 271Hs are predicted to have excesses of its daughters
uranium-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exi ...
and lead-207; they would also have different proportions of elements that are formed during spontaneous fission, such as
krypton Krypton (from grc, κρυπτός, translit=kryptos 'the hidden one') is a chemical element with the symbol Kr and atomic number 36. It is a colorless, odorless, tasteless noble gas that occurs in trace amounts in the atmosphere and is of ...
,
zirconium Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'' ...
, and
xenon Xenon is a chemical element with the symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
. The natural occurrence of hassium in minerals such as molybdenite and osmiride is theoretically possible, but very unlikely. In 2004, JINR started a search for natural hassium in the Modane Underground Laboratory in
Modane Modane (; ) is a commune in the Savoie department in the Auvergne-Rhône-Alpes region in southeastern France. The commune is in the Maurienne Valley, and it also belongs to the Vanoise National Park. It was part of the Kingdom of Sardinia unti ...
,
Auvergne-Rhône-Alpes Auvergne-Rhône-Alpes (ARA; ; frp, Ôvèrgne-Rôno-Ârpes; oc, Auvèrnhe Ròse Aups; it, Alvernia-Rodano-Alpi) is a region in southeast-central France created by the 2014 territorial reform of French regions; it resulted from the merger of Au ...
, France; this was done underground to avoid interference and false positives from
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
s. In 2008–09, an experiment run in the laboratory resulted in detection of several registered events of neutron multiplicity (number of emitted free neutrons after a nucleus hit has been hit by a neutron and fissioned) above three in natural osmium, and in 2012–13, these findings were reaffirmed in another experiment run in the laboratory. These results hinted natural hassium could potentially exist in nature in amounts that allow its detection by the means of analytical chemistry, but this conclusion is based on an explicit assumption that there is a long-lived hassium isotope to which the registered events could be attributed. Since 292Hs may be particularly stable against alpha decay and spontaneous fission, it was considered as a candidate to exist in nature. This nuclide, however, is predicted to be very unstable toward beta decay and any beta-stable isotopes of hassium such as 286Hs would be too unstable in the other decay channels to be observed in nature. A 2012 search for 292Hs in nature along with its homologue osmium at the Maier-Leibnitz Laboratory in
Garching Garching bei München (''Garching near Munich'') or Garching is a town in Bavaria, Germany, near Munich. It is the home of several research institutes and university departments on its campus. It became a city on 14 September 1990. Location The ...
,
Bavaria Bavaria ( ; ), officially the Free State of Bavaria (german: Freistaat Bayern, link=no ), is a state in the south-east of Germany. With an area of , Bavaria is the largest German state by land area, comprising roughly a fifth of the total l ...
, Germany, was unsuccessful, setting an upper limit to its abundance at of hassium per gram of osmium.


Predicted properties

Various calculations suggest hassium should be the heaviest group 8 element so far, consistently with the
periodic law Periodic trends are specific patterns that are present in the periodic table that illustrate different aspects of a certain element. They were discovered by the Russian chemist Dmitri Mendeleev in the year 1863. Major periodic trends include atom ...
. Its properties should generally match those expected for a heavier homologue of osmium; as is the case for all transactinides, a few deviations are expected to arise from
relativistic effects Relativistic quantum chemistry combines relativistic mechanics with quantum chemistry to calculate elemental properties and structure, especially for the heavier elements of the periodic table. A prominent example is an explanation for the color of ...
. Very few properties of hassium or its compounds have been measured; this is due to its extremely limited and expensive production and the fact that hassium (and its parents) decays very quickly. A few singular chemistry-related properties have been measured, such as enthalpy of adsorption of hassium tetroxide, but properties of hassium metal remain unknown and only predictions are available.


Relativistic effects

Relativistic effects Relativistic quantum chemistry combines relativistic mechanics with quantum chemistry to calculate elemental properties and structure, especially for the heavier elements of the periodic table. A prominent example is an explanation for the color of ...
on hassium should arise due to the high charge of its nuclei, which causes the electrons around the nucleus to move faster—so fast their velocity becomes comparable to the speed of light. There are three main effects: the direct relativistic effect, the indirect relativistic effect, and spin–orbit splitting. (The existing calculations do not account for Breit interactions, but those are negligible, and their omission can only result in an uncertainty of the current calculations of no more than 2%.) As atomic number increases, so does the electrostatic attraction between an electron and the nucleus. This causes the velocity of the electron to increase, which leads to an increase in its
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
. This in turn leads to contraction of the
atomic orbital In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in any ...
s, most specifically the s and p1/2 orbitals. Their electrons become more closely attached to the atom and harder to pull from the nucleus. This is the direct relativistic effect. It was originally thought to be strong only for the innermost electrons, but was later established to significantly influence valence electrons as well. Since the s and p1/2 orbitals are closer to the nucleus, they take a bigger portion of the electric charge of the nucleus on themselves ("shield" it). This leaves less charge for attraction of the remaining electrons, whose orbitals therefore expand, making them easier to pull from the nucleus. This is the indirect relativistic effect. As a result of the combination of the direct and indirect relativistic effects, the Hs+ ion, compared to the neutral atom, lacks a 6d electron, rather than a 7s electron. In comparison, Os+ lacks a 6s electron compared to the neutral atom. The ionic radius (in oxidation state +8) of hassium is greater than that of osmium because of the relativistic expansion of the 6p3/2 orbitals, which are the outermost orbitals for an Hs8+ ion (although in practice such highly charged ions would be too polarised in chemical environments to have much reality). There are several kinds of electronic orbitals, denoted by the letters s, p, d, and f (g orbitals are expected to start being chemically active among elements after element 120). Each of these corresponds to an
azimuthal quantum number The azimuthal quantum number is a quantum number for an atomic orbital that determines its orbital angular momentum and describes the shape of the orbital. The azimuthal quantum number is the second of a set of quantum numbers that describe ...
''l'': s to 0, p to 1, d to 2, and f to 3. Every electron also corresponds to a
spin quantum number In atomic physics, the spin quantum number is a quantum number (designated ) which describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. The phrase was originally used to describe t ...
''s'', which may equal either +1/2 or −1/2. Thus, the
total angular momentum quantum number In quantum mechanics, the total angular momentum quantum number parametrises the total angular momentum of a given particle, by combining its orbital angular momentum and its intrinsic angular momentum (i.e., its spin). If s is the particle's sp ...
''j = l'' + ''s'' is equal to ''j'' = ''l'' ± 1/2 (except for ''l'' = 0, for which for both electrons in each orbital ''j ='' 0 + 1/2 = 1/2).
Spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally ...
of an electron relativistically interacts with its orbit, and this interaction leads to a split of a subshell into two with different energies (the one with ''j'' = ''l'' − 1/2 is lower in energy and thus these electrons more difficult to extract): for instance, of the six 6p electrons, two become 6p1/2 and four become 6p3/2. This is the spin–orbit splitting (sometimes also referred to as subshell splitting or ''jj'' coupling). It is most visible with p electrons, which do not play an important role in the chemistry of hassium, but those for d and f electrons are within the same order of magnitude (quantitatively, spin–orbit splitting in expressed in energy units, such as
electronvolt In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacu ...
s). These relativistic effects are responsible for the expected increase of the
ionization energy Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
, decrease of the electron affinity, and increase of stability of the +8 oxidation state compared to osmium; without them, the trends would be reversed. Relativistic effects decrease the atomization energies of the compounds of hassium because the spin–orbit splitting of the d orbital lowers binding energy between electrons and the nucleus and because relativistic effects decrease ionic character in bonding.


Physical and atomic

The previous members of group8 have relatively high melting points: Fe, 1538°C; Ru, 2334°C; Os, 3033°C. Much like them, hassium is predicted to be a solid at room temperature although its melting point has not been precisely calculated. Hassium should crystallize in the hexagonal close-packed structure (''c''/''a''=1.59), similarly to its lighter congener osmium. Pure metallic hassium is calculated to have a
bulk modulus The bulk modulus (K or B) of a substance is a measure of how resistant to compression the substance is. It is defined as the ratio of the infinitesimal pressure increase to the resulting ''relative'' decrease of the volume. Other moduli descri ...
(resistance to uniform compression) of 450 GPa, comparable with that of
diamond Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, b ...
, 442GPa. Hassium is expected to be one of the densest of the 118 known elements, with a predicted density of 27–29 g/cm3 vs. the 22.59 g/cm3 measured for osmium. The atomic radius of hassium is expected to be around 126pm. Due to the relativistic stabilization of the 7s orbital and destabilization of the 6d orbital, the Hs+ ion is predicted to have an electron configuration of [ Rn]5f146d57s2, giving up a 6d electron instead of a 7s electron, which is the opposite of the behaviour of its lighter homologues. The Hs2+ ion is expected to have an electron configuration of nf146d57s1, analogous to that calculated for the Os2+ ion. In
chemical compound A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
s, hassium is calculated to display bonding characteristic for a d-block element, whose bonding will be primarily executed by 6d3/2 and 6d5/2 orbitals; compared to the elements from the previous periods, 7s, 6p1/2, 6p3/2, and 7p1/2 orbitals should be more important.


Chemical

Hassium is the sixth member of the 6d series of transition metals and is expected to be much like the
platinum group metal The platinum-group metals (abbreviated as the PGMs; alternatively, the platinoids, platinides, platidises, platinum group, platinum metals, platinum family or platinum-group elements (PGEs)) are six noble, precious metallic elements clustered tog ...
s. Some of these properties were confirmed by gas-phase chemistry experiments. The group8 elements portray a wide variety of oxidation states but ruthenium and osmium readily portray their group oxidation state of +8; this state becomes more stable down the group. This oxidation state is extremely rare: among stable elements, only ruthenium, osmium, and xenon are able to attain it in reasonably stable compounds. Hassium is expected to follow its congeners and have a stable +8 state, but like them it should show lower stable oxidation states such as +6, +4, +3, and +2. Hassium(IV) is expected to be more stable than hassium(VIII) in aqueous solution. Hassium should be a rather
noble metal A noble metal is ordinarily regarded as a metallic chemical element that is generally resistant to corrosion and is usually found in nature in its raw form. Gold, platinum, and the other platinum group metals ( ruthenium, rhodium, palladium, o ...
. The
standard reduction potential Redox potential (also known as oxidation / reduction potential, ''ORP'', ''pe'', ''E_'', or E_) is a measure of the tendency of a chemical species to acquire electrons from or lose electrons to an electrode and thereby be reduced or oxidised respe ...
for the Hs4+/Hs couple is expected to be 0.4V. The group 8 elements show a distinctive
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
chemistry. All the lighter members have known or hypothetical tetroxides, MO4. Their oxidizing power decreases as one descends the group. FeO4 is not known due to its extraordinarily large electron affinity—the amount of energy released when an electron is added to a neutral atom or molecule to form a negative ion—which results in the formation of the well-known
oxyanion An oxyanion, or oxoanion, is an ion with the generic formula (where A represents a chemical element and O represents an oxygen atom). Oxyanions are formed by a large majority of the chemical elements. The formulae of simple oxyanions are determine ...
ferrate(VI) Ferrate(VI) is the inorganic anion with the chemical formula eO4sup>2−. It is photosensitive, contributes a pale violet colour to compounds and solutions containing it and is one of the strongest water-stable oxidizing species known. Although ...
, . Ruthenium tetroxide, RuO4, which is formed by oxidation of ruthenium(VI) in acid, readily undergoes reduction to ruthenate(VI), . Oxidation of ruthenium metal in air forms the dioxide, RuO2. In contrast, osmium burns to form the stable tetroxide, OsO4, which complexes with the hydroxide ion to form an osmium(VIII) -''ate'' complex, sO4(OH)2sup>2−. Therefore, hassium should behave as a heavier homologue of osmium by forming of a stable, very volatile tetroxide HsO4, which undergoes complexation with
hydroxide Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. ...
to form a hassate(VIII), sO4(OH)2sup>2−. Ruthenium tetroxide and osmium tetroxide are both volatile due to their symmetrical
tetrahedral molecular geometry In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron. The bond angles are cos−1(−) = 109.4712206...° ≈ 109.5° when all four substituents a ...
and because they are charge-neutral; hassium tetroxide should similarly be a very volatile solid. The trend of the volatilities of the group8 tetroxides is experimentally known to be RuO44>HsO4, which confirms the calculated results. In particular, the calculated enthalpies of
adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
—the energy required for the
adhesion Adhesion is the tendency of dissimilar particles or surfaces to cling to one another ( cohesion refers to the tendency of similar or identical particles/surfaces to cling to one another). The forces that cause adhesion and cohesion can ...
of atoms, molecules, or ions from a gas, liquid, or dissolved solid to a
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
—of HsO4, −(45.4±1)kJ/mol on
quartz Quartz is a hard, crystalline mineral composed of silica ( silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon-oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical f ...
, agrees very well with the experimental value of −(46±2)kJ/mol.


Experimental chemistry

The first goal for chemical investigation was the formation of the tetroxide; it was chosen because ruthenium and osmium form volatile tetroxides, being the only transition metals to display a stable compound in the +8 oxidation state. Despite this selection for gas-phase chemical studies being clear from the beginning, chemical characterization of hassium was considered a difficult task for a long time. Although hassium isotopes were first synthesized in 1984, it was not until 1996 that a hassium isotope long-lived enough to allow chemical studies was synthesized. Unfortunately, this hassium isotope, 269Hs, was synthesized indirectly from the decay of 277Cn; not only are indirect synthesis methods not favourable for chemical studies, but the reaction that produced the isotope 277Cn had a low yield—its cross section was only 1 pb—and thus did not provide enough hassium atoms for a chemical investigation. Direct synthesis of 269Hs and 270Hs in the reaction 248Cm(26Mg,''x''n)274−''x''Hs (''x''=4 or 5) appeared more promising because the cross section for this reaction was somewhat larger at 7pb. This yield was still around ten times lower than that for the reaction used for the chemical characterization of
bohrium Bohrium is a synthetic chemical element with the symbol Bh and atomic number 107. It is named after Danish physicist Niels Bohr. As a synthetic element, it can be created in a laboratory but is not found in nature. All known isotopes of bohrium ...
. New techniques for irradiation, separation, and detection had to be introduced before hassium could be successfully characterized chemically. Ruthenium and osmium have very similar chemistry due to the
lanthanide contraction The lanthanide contraction is the greater-than-expected decrease in atomic radii/ionic radii of the elements in the lanthanide series from atomic number 57, lanthanum, to 71, lutetium, which results in smaller than otherwise expected atomic radii ...
but iron shows some differences from them; for example, although ruthenium and osmium form stable tetroxides in which the metal is in the +8 oxidation state, iron does not. In preparation for the chemical characterization of hassium, research focused on ruthenium and osmium rather than iron because hassium was expected to be similar to ruthenium and osmium, as the predicted data on hassium closely matched that of those two. The first chemistry experiments were performed using gas thermochromatography in 2001, using the synthetic osmium radioisotopes 172Os and 173Os as a reference. During the experiment, seven hassium atoms were synthesized using the reactions 248Cm(26Mg,5n)269Hs and 248Cm(26Mg,4n)270Hs. They were then thermalized and oxidized in a mixture of helium and oxygen gases to form hassium tetroxide molecules. :Hs + 2 O2 → HsO4 The measured
deposition Deposition may refer to: * Deposition (law), taking testimony outside of court * Deposition (politics), the removal of a person of authority from political power * Deposition (university), a widespread initiation ritual for new students practiced f ...
temperature of hassium tetroxide was higher than that of osmium tetroxide, which indicated the former was the less volatile one, and this placed hassium firmly in group 8. The enthalpy of adsorption for HsO4 measured, , was significantly lower than the predicted value, , indicating OsO4 is more volatile than HsO4, contradicting earlier calculations that implied they should have very similar volatilities. For comparison, the value for OsO4 is . (The calculations that yielded a closer match to the experimental data came after the experiment, in 2008.) It is possible hassium tetroxide interacts differently with
silicon nitride Silicon nitride is a chemical compound of the elements silicon and nitrogen. is the most thermodynamically stable and commercially important of the silicon nitrides, and the term "silicon nitride" commonly refers to this specific composition. It ...
than with
silicon dioxide Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
, the chemicals used for the detector; further research is required to establish whether there is a difference between such interactions and whether it has influenced the measurements. Such research would include more accurate measurements of the nuclear properties of 269Hs and comparisons with RuO4 in addition to OsO4. In 2004, scientists reacted hassium tetroxide and sodium hydroxide to form sodium hassate(VIII), a reaction that is well known with osmium. This was the first acid-base reaction with a hassium compound, forming sodium hassate(VIII): : + 2
NaOH Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations and hydroxide anions . Sodium hydroxide is a highly caustic base and alkali ...
→ The team from the
University of Mainz The Johannes Gutenberg University Mainz (german: Johannes Gutenberg-Universität Mainz) is a public research university in Mainz, Rhineland Palatinate, Germany, named after the printer Johannes Gutenberg since 1946. With approximately 32,000 stud ...
planned in 2008 to study the electrodeposition of hassium atoms using the new TASCA facility at GSI. Their aim was to use the reaction 226Ra(48Ca,4n)270Hs. Scientists at GSI were hoping to use TASCA to study the synthesis and properties of the hassium(II) compound hassocene, Hs( C5H5)2, using the reaction 226Ra(48Ca,''x''n). This compound is analogous to the lighter compounds
ferrocene Ferrocene is an organometallic compound with the formula . The molecule is a complex consisting of two cyclopentadienyl rings bound to a central iron atom. It is an orange solid with a camphor-like odor, that sublimes above room temperature, ...
, ruthenocene, and osmocene, and is expected to have the two cyclopentadienyl rings in an
eclipsed conformation In chemistry an eclipsed conformation is a conformation in which two substituents X and Y on adjacent atoms A, B are in closest proximity, implying that the torsion angle X–A–B–Y is 0°. Such a conformation can exist in any open chain ...
like ruthenocene and osmocene and not in a staggered conformation like ferrocene. Hassocene, which is expected to be a stable and highly volatile compound, was chosen because it has hassium in the low formal oxidation state of +2—although the bonding between the metal and the rings is mostly
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
in
metallocene A metallocene is a compound typically consisting of two cyclopentadienyl anions (, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula Closely related to the metallocenes are the metallocene d ...
s—rather than the high +8 state that had previously been investigated, and relativistic effects were expected to be stronger in the lower oxidation state. The highly symmetrical structure of hassocene and its low number of atoms make relativistic calculations easier. , there are no experimental reports of hassocene.


Notes


References


Bibliography

* * * * * * * * *


External links

* {{featured article Chemical elements Transition metals Synthetic elements Chemical elements with hexagonal close-packed structure