Harmonic analysis
   HOME

TheInfoList



OR:

Harmonic analysis is a branch of
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
concerned with the representation of functions or signals as the superposition of basic
wave In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (re ...
s, and the study of and generalization of the notions of
Fourier series A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or '' ...
and
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed ...
s (i.e. an extended form of Fourier analysis). In the past two centuries, it has become a vast subject with applications in areas as diverse as
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Ma ...
, representation theory,
signal processing Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing '' signals'', such as sound, images, and scientific measurements. Signal processing techniques are used to optimize transmissions, ...
,
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
, tidal analysis and
neuroscience Neuroscience is the science, scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions and disorders. It is a Multidisciplinary approach, multidisciplinary science that combines physiology, an ...
. The term "
harmonic A harmonic is a wave with a frequency that is a positive integer multiple of the ''fundamental frequency'', the frequency of the original periodic signal, such as a sinusoidal wave. The original signal is also called the ''1st harmonic'', t ...
s" originated as the
Ancient Greek Ancient Greek includes the forms of the Greek language used in ancient Greece and the ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Dark Ages (), the Archaic pe ...
word ''harmonikos'', meaning "skilled in music". In physical
eigenvalue In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denote ...
problems, it began to mean waves whose frequencies are integer multiples of one another, as are the frequencies of the harmonics of music notes, but the term has been generalized beyond its original meaning. The classical Fourier transform on R''n'' is still an area of ongoing research, particularly concerning Fourier transformation on more general objects such as
tempered distributions Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives d ...
. For instance, if we impose some requirements on a distribution ''f'', we can attempt to translate these requirements in terms of the Fourier transform of ''f''. The
Paley–Wiener theorem In mathematics, a Paley–Wiener theorem is any theorem that relates decay properties of a function or distribution at infinity with analyticity of its Fourier transform. The theorem is named for Raymond Paley (1907–1933) and Norbert Wiener (18 ...
is an example of this. The Paley–Wiener theorem immediately implies that if ''f'' is a nonzero
distribution Distribution may refer to: Mathematics * Distribution (mathematics), generalized functions used to formulate solutions of partial differential equations *Probability distribution, the probability of a particular value or value range of a vari ...
of compact support (these include functions of compact support), then its Fourier transform is never compactly supported (i.e. if a signal is limited in one domain, it is unlimited in the other). This is a very elementary form of an uncertainty principle in a harmonic-analysis setting. Fourier series can be conveniently studied in the context of
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
s, which provides a connection between harmonic analysis and
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defi ...
. There are four versions of the Fourier transform, dependent on the spaces that are mapped by the transformation (discrete/periodic–discrete/periodic:
discrete Fourier transform In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a comple ...
, continuous/periodic–discrete/aperiodic:
Fourier series A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or '' ...
, discrete/aperiodic–continuous/periodic:
discrete-time Fourier transform In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term ''discrete-time'' refers to the ...
, continuous/aperiodic–continuous/aperiodic:
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed ...
).


Abstract harmonic analysis

One of the most modern branches of harmonic analysis, having its roots in the mid-20th century, is
analysis Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...
on
topological group In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two st ...
s. The core motivating ideas are the various
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed ...
s, which can be generalized to a transform of functions defined on Hausdorff locally compact topological groups. The theory for
abelian Abelian may refer to: Mathematics Group theory * Abelian group, a group in which the binary operation is commutative ** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms * Metabelian group, a grou ...
locally compact groups is called Pontryagin duality. Harmonic analysis studies the properties of that duality and Fourier transform and attempts to extend those features to different settings, for instance, to the case of non-abelian
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the addi ...
s. For general non-abelian locally compact groups, harmonic analysis is closely related to the theory of unitary group representations. For compact groups, the Peter–Weyl theorem explains how one may get harmonics by choosing one irreducible representation out of each equivalence class of representations. This choice of harmonics enjoys some of the useful properties of the classical Fourier transform in terms of carrying convolutions to pointwise products, or otherwise showing a certain understanding of the underlying group structure. See also: Non-commutative harmonic analysis. If the group is neither abelian nor compact, no general satisfactory theory is currently known ("satisfactory" means at least as strong as the Plancherel theorem). However, many specific cases have been analyzed, for example SL''n''. In this case, representations in infinite dimensions play a crucial role.


Other branches

*Study of the
eigenvalue In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denote ...
s and eigenvectors of the Laplacian on
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined ** Domain of definition of a partial function ** Natural domain of a partial function **Domain of holomorphy of a function * ...
s,
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
s, and (to a lesser extent) graphs is also considered a branch of harmonic analysis. See e.g., hearing the shape of a drum. * Harmonic analysis on Euclidean spaces deals with properties of the
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed ...
on R''n'' that have no analog on general groups. For example, the fact that the Fourier transform is rotation-invariant. Decomposing the Fourier transform into its radial and spherical components leads to topics such as
Bessel function Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrar ...
s and
spherical harmonic In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. Since the spherical harmonics form ...
s. * Harmonic analysis on tube domains is concerned with generalizing properties of Hardy spaces to higher dimensions.


Applied harmonic analysis

Many applications of harmonic analysis in science and engineering begin with the idea or hypothesis that a phenomenon or signal is composed of a sum of individual oscillatory components. Ocean
tide Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon (and to a much lesser extent, the Sun) and are also caused by the Earth and Moon orbiting one another. Tide tables ...
s and vibrating strings are common and simple examples. The theoretical approach is often to try to describe the system by a
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, ...
or
system of equations In mathematics, a set of simultaneous equations, also known as a system of equations or an equation system, is a finite set of equations for which common solutions are sought. An equation system is usually classified in the same manner as single ...
to predict the essential features, including the amplitude, frequency, and phases of the oscillatory components. The specific equations depend on the field, but theories generally try to select equations that represent major principles that are applicable. The experimental approach is usually to acquire data that accurately quantifies the phenomenon. For example, in a study of tides, the experimentalist would acquire samples of water depth as a function of time at closely enough spaced intervals to see each oscillation and over a long enough duration that multiple oscillatory periods are likely included. In a study on vibrating strings, it is common for the experimentalist to acquire a sound waveform sampled at a rate at least twice that of the highest frequency expected and for a duration many times the period of the lowest frequency expected. For example, the top signal at the right is a sound waveform of a bass guitar playing an open string corresponding to an A note with a fundamental frequency of 55 Hz. The waveform appears oscillatory, but it is more complex than a simple sine wave, indicating the presence of additional waves. The different wave components contributing to the sound can be revealed by applying a mathematical analysis technique known as the
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed ...
, the result of which is shown in the lower figure. Note that there is a prominent peak at 55 Hz, but that there are other peaks at 110 Hz, 165 Hz, and at other frequencies corresponding to integer multiples of 55 Hz. In this case, 55 Hz is identified as the fundamental frequency of the string vibration, and the integer multiples are known as
harmonic A harmonic is a wave with a frequency that is a positive integer multiple of the ''fundamental frequency'', the frequency of the original periodic signal, such as a sinusoidal wave. The original signal is also called the ''1st harmonic'', t ...
s.


See also

* Convergence of Fourier series * Fourier analysis for computing periodicity in evenly spaced data * Harmonic (mathematics) * Least-squares spectral analysis for computing periodicity in unevenly spaced data *
Spectral density estimation In statistical signal processing, the goal of spectral density estimation (SDE) or simply spectral estimation is to estimate the spectral density (also known as the power spectral density) of a signal from a sequence of time samples of the sig ...
* Tate's thesis


References


Bibliography

* Elias Stein and Guido Weiss, ''Introduction to Fourier Analysis on Euclidean Spaces'',
Princeton University Press Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial ...
, 1971. * Elias Stein with Timothy S. Murphy, ''Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals'', Princeton University Press, 1993. * Elias Stein, ''Topics in Harmonic Analysis Related to the Littlewood-Paley Theory'', Princeton University Press, 1970. * Yitzhak Katznelson, ''An introduction to harmonic analysis'', Third edition. Cambridge University Press, 2004. ; 0-521-54359-2 * Terence Tao
Fourier Transform
(Introduces the decomposition of functions into odd + even parts as a harmonic decomposition over ℤ₂.) * Yurii I. Lyubich. ''Introduction to the Theory of Banach Representations of Groups''. Translated from the 1985 Russian-language edition (Kharkov, Ukraine). Birkhäuser Verlag. 1988. * George W. Mackey
Harmonic analysis as the exploitation of symmetry–a historical survey
''Bull. Amer. Math. Soc.'' 3 (1980), 543–698. * M. Bujosa, A. Bujosa and A. Garcıa-Ferrer
Mathematical Framework for Pseudo-Spectra of Linear Stochastic Difference Equations
''IEEE Transactions on Signal Processing'' vol. 63 (2015), 6498-6509.


External links

{{Authority control Acoustics Musical terminology