Gravitino
   HOME

TheInfoList



OR:

In
supergravity In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as ...
theories combining
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
and
supersymmetry In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories ...
, the gravitino () is the gauge fermion supersymmetric partner of the hypothesized
graviton In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathem ...
. It has been suggested as a candidate for
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ...
. If it exists, it is a
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
of
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally ...
and therefore obeys the
Rarita–Schwinger equation In theoretical physics, the Rarita–Schwinger equation is the relativistic field equation of spin-3/2 fermions. It is similar to the Dirac equation for spin-1/2 fermions. This equation was first introduced by William Rarita and Julian Schwing ...
. The gravitino field is conventionally written as ''ψμα'' with a
four-vector In special relativity, a four-vector (or 4-vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a ...
index and a
spinor In geometry and physics, spinors are elements of a complex vector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a sligh ...
index. For one would get negative norm modes, as with every massless particle of
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally ...
1 or higher. These modes are unphysical, and for
consistency In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent ...
there must be a
gauge symmetry In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie group ...
which cancels these modes: , where ''εα''(''x'') is a
spinor In geometry and physics, spinors are elements of a complex vector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a sligh ...
function of spacetime. This gauge symmetry is a local
supersymmetry In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories ...
transformation, and the resulting theory is
supergravity In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as ...
. Thus the gravitino is the fermion mediating supergravity interactions, just as the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
is mediating
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
, and the
graviton In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathem ...
is presumably mediating
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
. Whenever supersymmetry is broken in supergravity theories, it acquires a mass which is determined by the scale at which supersymmetry is broken. This varies greatly between different models of supersymmetry breaking, but if supersymmetry is to solve the
hierarchy problem In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than grav ...
of the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It ...
, the gravitino cannot be more massive than about 1
TeV TEV may refer to: * Transient Earth Voltage: a term for voltages appearing on the metal work of switchgear due to internal partial discharges * TeV, or teraelectronvolt or trillion electron volt, a measure of energy * Total Enterprise Value, a ...
/c2.


Gravitino cosmological problem

If the gravitino indeed has a mass of the order of TeV, then it creates a problem in the
standard model of cosmology The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda (Greek Λ) associated with d ...
, at least naïvely. One option is that the gravitino is stable. This would be the case if the gravitino is the lightest supersymmetric particle and
R-parity R-parity is a concept in particle physics. In the Minimal Supersymmetric Standard Model, baryon number and lepton number are no longer conserved by all of the renormalizable couplings in the theory. Since baryon number and lepton number conservati ...
is conserved (or nearly so). In this case the gravitino is a candidate for
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ...
; as such gravitinos will have been created in the very early universe. However, one may calculate the density of gravitinos and it turns out to be much higher than the observed
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ...
density. The other option is that the gravitino is unstable. Thus the gravitinos mentioned above would decay and will not contribute to the observed
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ...
density. However, since they decay only through gravitational interactions, their lifetime would be very long, of the order of in
natural units In physics, natural units are physical units of measurement in which only universal physical constants are used as defining constants, such that each of these constants acts as a coherent unit of a quantity. For example, the elementary charge ma ...
, where ''Mpl'' is the Planck mass and ''m'' is the mass of a gravitino. For a gravitino mass of the order of TeV this would be , much later than the era of nucleosynthesis. At least one possible channel of decay must include either a
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
, a charged
lepton In particle physics, a lepton is an elementary particle of half-integer spin (spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutr ...
or a
meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, ...
, each of which would be energetic enough to destroy a
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: * Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
if it strikes one. One can show that enough such energetic particles will be created in the decay as to destroy almost all the nuclei created in the era of nucleosynthesis, in contrast with observations. In fact, in such a case the universe would have been made of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
alone, and
star formation Star formation is the process by which dense regions within molecular clouds in The "medium" is present further soon.-->interstellar space
would probably be impossible. One possible solution to the cosmological gravitino problem is the
split supersymmetry In particle physics, split supersymmetry is a proposal for physics beyond the Standard Model. History It was proposed separately in three papers. The first by James Wells in June 2003 in a more modest form that mildly relaxed the assumption abou ...
model, where the gravitino mass is much higher than the TeV scale, but other fermionic supersymmetric partners of standard model particles already appear at this scale. Another solution is that
R-parity R-parity is a concept in particle physics. In the Minimal Supersymmetric Standard Model, baryon number and lepton number are no longer conserved by all of the renormalizable couplings in the theory. Since baryon number and lepton number conservati ...
is slightly violated and the gravitino is the lightest supersymmetric particle. This causes almost all supersymmetric particles in the early Universe to decay into Standard Model particles via
R-parity R-parity is a concept in particle physics. In the Minimal Supersymmetric Standard Model, baryon number and lepton number are no longer conserved by all of the renormalizable couplings in the theory. Since baryon number and lepton number conservati ...
violating interactions well before the synthesis of primordial nuclei; a small fraction however decay into gravitinos, whose half-life is orders of magnitude greater than the age of the Universe due to the suppression of the decay rate by the Planck scale and the small
R-parity R-parity is a concept in particle physics. In the Minimal Supersymmetric Standard Model, baryon number and lepton number are no longer conserved by all of the renormalizable couplings in the theory. Since baryon number and lepton number conservati ...
violating couplings.


See also

*
Supersymmetry In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories ...
*
Graviton In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathem ...
* Dual graviton *
Gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...


References

{{Authority control Fermions Quantum gravity Hypothetical elementary particles