Graphane
   HOME

TheInfoList



OR:

Graphane is a two-dimensional
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
of
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon mak ...
and
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
with the
formula unit In chemistry, a formula unit is the empirical formula of any ionic or covalent network solid compound used as an independent entity for stoichiometric calculations. It is the lowest whole number ratio of ions represented in an ionic compound. E ...
(CH)n where ''n'' is large. Partial hydrogenation results in hydrogenated graphene, which was reported by Elias et al in 2009 by a
TEM Tem or TEM may refer to: Acronyms * Threat and error management, an aviation safety management model. * Telecom Expense Management * Telecom Equipment Manufacturer * TEM (currency), local to Volos, Greece * TEM (nuclear propulsion), a Russian ...
study to be "direct evidence for a new graphene-based derivative". The authors viewed the panorama as "a whole range of new two-dimensional crystals with designed electronic and other properties".


Synthesis

Its preparation was reported in 2009. Graphane can be formed by electrolytic hydrogenation of graphene, few-layer graphene or high-oriented
pyrolytic graphite Pyrolytic carbon is a material similar to graphite, but with some covalent bonding between its graphene sheets as a result of imperfections in its production. Pyrolytic carbon is man-made and is thought not to be found in nature.Ratner, Buddy D. ...
. In the last case mechanical exfoliation of hydrogenated top layers can be used.


Structure

The first theoretical description of graphane was reported in 2003. The structure was found, using a cluster expansion method, to be the most stable of all the possible hydrogenation ratios of graphene. In 2007, researchers found that the compound is more stable than other compounds containing carbon and hydrogen, such as
benzene Benzene is an organic chemical compound with the molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen atoms ...
, cyclohexane and
polyethylene Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging ( plastic bags, plastic films, geomembranes and containers including b ...
. This group named the predicted compound graphane, because it is the fully saturated version of graphene. Graphane is effectively made up of cyclohexane units, and, in parallel to cyclohexane, the most stable structural conformation is not planar, but an out-of-plane structure, including the chair and boat conformers, in order to minimize ring strain and allow for the ideal tetrahedral bond angle of 109.5° for sp3-bonded atoms. However, in contrast to cyclohexane, graphane cannot interconvert between these different conformers because not only are they topologically different, but they are also different structural isomers with different configurations. The chair conformer has the hydrogens alternating above or below the plane from carbon to neighboring carbon, while the boat conformer has the hydrogen atoms alternating in pairs above and below the plane. There are also other possible conformational isomers, including the twist-boat and twist-boat-chair. As with cyclohexane, the most stable conformer for graphane is the chair, followed by the twist-boat structure. While the buckling of the chair conformer would imply lattice shrinkage, calculations show the lattice actually expands by approximately 30% due to the opposing effect on the lattice spacing of the longer carbon-carbon (C-C) bonds, as the sp3-bonding of graphane yields longer C-C bonds of 1.52 Å compared to the sp2-bonding of graphene which yields shorter C-C bonds of 1.42 Å. As just established, theoretically if graphane was perfect and everywhere in its stable chair conformer, the lattice would expand; however, the existence of domains where the locally stable twist-boat conformer dominates “contribute to the experimentally observed lattice contraction.” When experimentalists have characterized graphane, they have found a distribution of lattice spacings, corresponding to different domains exhibiting different conformers. Any disorder in hydrogenation conformation tends to contract the lattice constant by about 2.0%. Graphane is an insulator. Chemical functionalization of graphene with hydrogen may be a suitable method to open a band gap in graphene. P-doped graphane is proposed to be a high-temperature
BCS theory BCS theory or Bardeen–Cooper–Schrieffer theory (named after John Bardeen, Leon Cooper, and John Robert Schrieffer) is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory describes sup ...
superconductor with a Tc above 90 K.


Variants

Partial hydrogenation leads to hydrogenated graphene rather than (fully hydrogenated) graphane. Such compounds are usually named as "graphane-like" structures. Graphane and graphane-like structures can be formed by electrolytic hydrogenation of graphene or few-layer graphene or high-oriented
pyrolytic graphite Pyrolytic carbon is a material similar to graphite, but with some covalent bonding between its graphene sheets as a result of imperfections in its production. Pyrolytic carbon is man-made and is thought not to be found in nature.Ratner, Buddy D. ...
. In the last case mechanical exfoliation of hydrogenated top layers can be used. Hydrogenation of graphene on substrate affects only one side, preserving hexagonal symmetry. One-sided hydrogenation of graphene is possible due to the existence of ripplings. Because the latter are distributed randomly, the obtained material is disordered in contrast to two-sided graphane. Annealing allows the hydrogen to disperse, reverting to graphene. Simulations revealed the underlying kinetic mechanism.
Density functional theory Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
calculations suggested that hydrogenated and fluorinated forms of other group IV ( Si, Ge and Sn) nanosheets present properties similar to graphane.


Potential applications

p-Doped graphane is postulated to be a high-temperature
BCS theory BCS theory or Bardeen–Cooper–Schrieffer theory (named after John Bardeen, Leon Cooper, and John Robert Schrieffer) is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory describes sup ...
superconductor with a Tc above 90 K. Graphane has been proposed for hydrogen storage. Hydrogenation decreases the dependence of the
lattice constant A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal. A simple cubic crystal has o ...
on temperature, which indicates a possible application in precision instruments.


References


External links


Sep 14, 2010 Hydrogen vacancies induce stable ferromagnetism in graphane
{{Webarchive, url=https://web.archive.org/web/20101127062429/http://nanotechweb.org/cws/article/lab/43687 , date=November 27, 2010
May 25, 2010 Graphane yields new potential

May 02 2010 Doped Graphane Should Superconduct at 90K
Two-dimensional nanomaterials Polymers Superconductors Hydrocarbons