Gladstone–Dale relation
   HOME

TheInfoList



OR:

The Gladstone–Dale relation is a mathematical relation used for optical analysis of liquids, the determination of composition from optical measurements. It can also be used to calculate the
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
of a liquid for use in fluid dynamics (e.g., flow visualization). The relation has also been used to calculate
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
of glass and
minerals In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed ...
in
optical mineralogy Optical mineralogy is the study of minerals and rocks by measuring their optical properties. Most commonly, rock and mineral samples are prepared as thin sections or grain mounts for study in the laboratory with a petrographic microscope. Opti ...
.


Uses

In the Gladstone–Dale relation, (n-1)/\rho = \sum km, the index of refraction (n) or the
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
(ρ in g/cm3) of miscible liquids that are mixed in mass fraction (m) can be calculated from characteristic optical constants (the
molar refractivity Molar refractivity,W. Foerst et.al. ''Chemie für Labor und Betrieb'', 1967, ''3'', 32-34. https://organic-btc-ilmenau.jimdo.com/app/download/9062135220/molrefraktion.pdf?t=1616948905 A, is a measure of the total polarizability of a mole of a subs ...
k in cm3/g) of pure molecular end-members. For example, for any mass (m) of ethanol added to a mass of water, the alcohol content is determined by measuring density or index of refraction ( Brix
refractometer A refractometer is a laboratory or field device for the measurement of an index of refraction ( refractometry). The index of refraction is calculated from the observed refraction angle using Snell's law. For mixtures, the index of refraction the ...
). Mass (m) per unit volume (V) is the density m/V. Mass is conserved on mixing, but the volume of 1 cm3 of ethanol mixed with 1 cm3 of water is reduced to less than 2 cm3 due to the formation of ethanol-water bonds. The plot of volume or density versus molecular fraction of ethanol in water is a quadratic curve. However, the plot of index of refraction versus molecular fraction of ethanol in water is linear, and the weight fraction equals the fractional density In the 1900s, the Gladstone–Dale relation was applied to glass, synthetic crystals and
minerals In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed ...
. Average values for the refractivity of oxides such as MgO or SiO2 give good to excellent agreement between the calculated and measured average indices of refraction of minerals. However, specific values of refractivity are required to deal with different structure-types, and the relation required modification to deal with structural polymorphs and the birefringence of anisotropic crystal structures. In recent optical crystallography, Gladstone–Dale constants for the refractivity of ions were related to the inter-ionic distances and angles of the
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns ...
. The ionic refractivity depends on 1/d2, where d is the inter-ionic distance, indicating that a particle-like photon refracts locally due to the electrostatic Coulomb force between ions.


Expression

The Gladstone–Dale relation can be expressed as an equation of state by re-arranging the terms to (n-1)V = \sum kdm. (n - 1) / d = \mathrm Where n is the index of refraction, D = density and constant = Gladstone-Dale constant. The macroscopic values (n) and (V) determined on bulk material are now calculated as a sum of atomic or molecular properties. Each molecule has a characteristic mass (due to the atomic weights of the elements) and atomic or molecular volume that contributes to the bulk density, and a characteristic refractivity due to a characteristic electric structure that contributes to the net index of refraction. The refractivity of a single molecule is the refractive volume k(MW)/''N''A in nm3, where MW is the molecular weight and ''N''A is the
Avogadro constant The Avogadro constant, commonly denoted or , is the proportionality factor that relates the number of constituent particles (usually molecules, atoms or ions) in a sample with the amount of substance in that sample. It is an SI defining c ...
. To calculate the optical properties of materials using the polarizability or refractivity volumes in nm3, the Gladstone–Dale relation competes with the Kramers–Kronig relation and Lorentz–Lorenz relation but differs in optical theory. The index of refraction (n) is calculated from the change of angle of a collimated monochromatic beam of light from vacuum into liquid using Snell's law for
refraction In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenome ...
. Using the theory of light as an electromagnetic wave, light takes a straight-line path through water at reduced speed (v) and wavelength (λ). The ratio v/λ is a constant equal to the frequency (ν) of the light, as is the quantized (photon) energy using the
Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
and E = hν. Compared to the constant speed of light in a vacuum (c), the index of refraction of water is n = c/v. The Gladstone–Dale term (n−1) is the non-linear optical path length or time delay. Using
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the grea ...
's theory of light as a stream of particles refracted locally by (electric) forces acting between atoms, the optic path length is due to refraction at constant speed by displacement about each atom. For light passing through 1 m of water with n = 1.33, light traveled an extra 0.33 m compared to light that traveled 1 m in a straight line in vacuum. As the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
is a ratio (distance per unit time in m/s), light also took an extra 0.33 s to travel through water compared to light traveling 1 s in vacuum.


Compatibility index

Mandarino, in his review of the Gladstone–Dale relationship in minerals proposed the concept of the Compatibility Index in comparing the physical and optical properties of minerals. This compatibility index is a required calculation for approval as a new mineral species (see IMA guidelines). The compatibility index (CI) is defined as follows: \mathrm_\text = (1 - \mathrm_\text / \mathrm ) \quad \mathrm_\text = (1 - \mathrm_\text / \mathrm ) Where, KP = Gladstone-Dale Constant derived from physical properties.


Requirements

The Gladstone–Dale relation requires a particle model of light because the continuous wave-front required by wave theory cannot be maintained if light encounters atoms or molecules that maintain a local electric structure with a characteristic refractivity. Similarly, the wave theory cannot explain the photoelectric effect or absorption by individual atoms and one requires a local particle of light (see
wave–particle duality Wave–particle duality is the concept in quantum mechanics that every particle or quantum entity may be described as either a particle or a wave. It expresses the inability of the classical concepts "particle" or "wave" to fully describe the b ...
). A local model of light consistent with these electrostatic refraction calculations occurs if the electromagnetic energy is restricted to a finite region of space. An electric-charge monopole must occur perpendicular to dipole loops of magnetic flux, but if local mechanisms for propagation are required, a periodic oscillatory exchange of electromagnetic energy occurs with transient mass. In the same manner, a change of mass occurs as an electron binds to a proton. This local photon has zero rest mass and no net charge, but has wave properties with spin-1 symmetry on trace over time. In this modern version of Newton's corpuscular theory of light, the local photon acts as a probe of the molecular or crystal structure.


References

{{DEFAULTSORT:Gladstone-Dale relation Fluid dynamics Optics