Glaciers on Mars
   HOME

TheInfoList



OR:

Glaciers A glacier (; ) is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as ...
, loosely defined as patches of currently or recently flowing ice, are thought to be present across large but restricted areas of the modern Martian surface, and are inferred to have been more widely distributed at times in the past."The Surface of Mars" Series: Cambridge Planetary Science (No. 6) Michael H. Carr, United States Geological Survey, Menlo Park Lobate convex features on the surface known as viscous flow features and
lobate debris aprons Lobate debris aprons (LDAs) are geological features on Mars, first seen by the Viking Orbiters, consisting of piles of rock debris below cliffs. These features have a convex topography and a gentle slope from cliffs or escarpments, which suggest fl ...
, which show the characteristics of non-Newtonian flow, are now almost unanimously regarded as true glaciers. However, a variety of other features on the surface have also been interpreted as directly linked to flowing ice, such as fretted terrain, lineated valley fill, concentric crater fill, and arcuate ridges. A variety of surface textures seen in imagery of the midlatitudes and polar regions are also thought to be linked to sublimation of glacial ice. Today, features interpreted as glaciers are largely restricted to latitudes polewards of around 30° latitude. Particular concentrations are found in the Ismenius Lacus quadrangle. Based on current models of the Martian atmosphere, ice should not be stable if exposed at the surface in the mid-Martian latitudes. It is thus thought that most glaciers must be covered with a layer of rubble or dust preventing free transfer of water vapor from the subliming ice into the air. This also suggests that in the recent geological past, the climate of Mars must have been different in order to allow the glaciers to grow stably at these latitudes. This provides good independent evidence that the obliquity of Mars has changed significantly in the past, as independently indicated by modelling of the
orbit of Mars Mars has an orbit with a semimajor axis of 1.524 astronomical units (228 million km), and an eccentricity of 0.0934.Jean Meeus, ''Astronomical Formulæ for Calculators''. (Richmond, VA: Willmann-Bell, 1988) 99. Elements by F. E. Ross The planet ...
. Evidence for past glaciation also appears on the peaks of several Martian volcanoes in the tropics. Like glaciers on Earth, glaciers on Mars are not pure water ice. Many are thought to contain substantial proportions of debris, and a substantial number are probably better described as
rock glacier Rock glaciers are distinctive geomorphological landforms, consisting either of angular rock debris frozen in interstitial ice, former "true" glaciers overlain by a layer of talus, or something in-between. Rock glaciers are normally found at high ...
s. For many years, largely because of the modeled instability of water ice in the midlatitudes where the putative glacial features were concentrated, it was argued that almost all glaciers were rock glaciers on Mars. However, recent direct observations made by the SHARAD radar instrument on the Mars Reconnaissance Orbiter satellite have confirmed that at least some features are relatively pure ice, and thus, true glaciers. Some authors have also made claims that glaciers of solid carbon dioxide have formed on Mars under certain rare conditions. Some landscapes look just like glaciers moving out of mountain valleys on Earth. Some appear to have a hollowed out center, looking like a glacier after almost all the ice has disappeared. What is left are the
moraine A moraine is any accumulation of unconsolidated debris ( regolith and rock), sometimes referred to as glacial till, that occurs in both currently and formerly glaciated regions, and that has been previously carried along by a glacier or ice sh ...
s—the dirt and debris carried by the glacier. These supposed alpine glaciers have been called glacier-like forms (GLF) or glacier-like flows (GLF). Glacier-like forms are a later and maybe more accurate term because we cannot be sure the structure is currently moving. Another, more general term sometimes seen in the literature is viscous flow features (VFF).


Radar studies

Radar studies with the SHAllow RADar (SHARAD) on the Mars Reconnaissance Orbiter showed that lobate debris aprons (LDA) and lineated valley fill (LVF) contain pure water ice covered with a thin layer of rocks that insulated the ice.Plaut, J. et al. 2008. Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars. Lunar and Planetary Science XXXIX. 2290.pdf Ice was found both in the southern hemisphere and in the northern hemisphere. Researchers at the Niels Bohr Institute combined radar observations with ice flow modelling to say that ice in all of the Martian glaciers is equivalent to what could cover the entire surface of Mars with 1.1 meters of ice. The fact that the ice is still there suggests that a thick layer of dust is protecting the ice; the current atmospheric conditions on Mars are such that any exposed water ice would sublimate.


Climate changes

It is thought that ice accumulated when Mars' orbital tilt was very different from the present (the axis the planet spins on has considerable "wobble," meaning its angle changes over time). A few million years ago, the tilt of the axis of Mars was 45 degrees instead of its present 25 degrees. Its tilt, also called obliquity, varies greatly because its two tiny moons cannot stabilize it like our moon. Many features on Mars, especially in the Ismenius Lacus quadrangle, are believed to contain large amounts of ice. The most popular model for the origin of the ice is climate change from large changes in the tilt of the planet's rotational axis. At times the tilt has even been greater than 80 degrees Large changes in the tilt explains many ice-rich features on Mars. Studies have shown that when the tilt of Mars reaches 45 degrees from its current 25 degrees, ice is no longer stable at the poles. Furthermore, at this high tilt, stores of solid carbon dioxide (dry ice) sublimate, thereby increasing the atmospheric pressure. This increased pressure allows more dust to be held in the atmosphere. Moisture in the atmosphere will fall as snow or as ice frozen onto dust grains. Calculations suggest this material will concentrate in the mid-latitudes. General circulation models of the Martian atmosphere predict accumulations of ice-rich dust in the same areas where ice-rich features are found. When the tilt begins to return to lower values, the ice sublimates (turns directly to a gas) and leaves behind a lag of dust. The lag deposit caps the underlying material so with each cycle of high tilt levels, some ice-rich mantle remains behind. The smooth surface mantle layer probably represents only relative recent material.


Geomorphology


Concentric crater fill, lineated valley fill, and lobate debris aprons

Several types of landforms have been identified as probably dirt and rock debris covering huge deposits of ice. Concentric crater fill (CCF) contains dozens to hundreds of concentric ridges that are caused by the movements of sometimes hundreds of meter thick accumulations of ice in craters. Lineated valley fill (LVF)are lines of ridges in valleys. These lines may have developed as other glaciers moved down valleys. Some of these glaciers seem to come from material sitting around mesas and buttes.
Lobate debris aprons Lobate debris aprons (LDAs) are geological features on Mars, first seen by the Viking Orbiters, consisting of piles of rock debris below cliffs. These features have a convex topography and a gentle slope from cliffs or escarpments, which suggest fl ...
(LDA) is the name given to these glaciers. All of these features that are believed to contain large amounts of ice are found in the mid-latitudes in both the Northern and Southern hemispheres. These areas are sometimes called Fretted terrain because it is sometimes winkled. With the superior resolution of cameras on Mars Global Surveyor (MGS) and MRO, we have found the surface of LDA’s, LVF, and CCFs’ have a complex tangle of ridges that resemble the surface of the human brain. Wide ridges are called closed-cell brain terrain, and the less common narrow ridges are called open-cell brain terrain. It is thought that the wide closed-cell terrain still contains a core of ice, that when it eventually disappears the center of the wide ridge collapses to produce the narrow ridges of the open-cell brain terrain. Today it is widely accepted that glacier-like forms, lobate debris aprons, lineated valley fill, and concentric fill are all related in that they have the same surface texture. Glacier-like forms in valleys and cirque-like alcoves may coalesce with others to produce lobate debris aprons. When opposing lobate debris aprons converge, linear valley fill results Many of these features are found in the Northern hemisphere in parts of a boundary called the Martian dichotomy. The Martian dichotomy is mostly found between 0 and 70 E longitudes. Near this area are regions that are named from ancient names: Deuteronilus Mensae, Protonilus Mensae, and Nilosyrtis Mensae. Image:Hollows as seen by hirise under hiwish program.jpg, Well-developed hollows, as seen by HiRISE under the HiWish program. Hollows are on floor of a crater with concentric crater fill. Location is Casius quadrangle. Image:crackswithpitsconcentric.jpg, Close-up that shows cracks containing pits on the floor of a crater containing concentric crater fill, as seen by HiRISE under HiWish program. Location is Casius quadrangle. Image:Hypsas Valles.JPG, Clanis and Hypsas Valles, as seen by HiRISE. Ridges are probably due to glacial flow. Ice is covered by a thin layer of rocks. Location is Ismenius Lacus quadrangle. Image:Coloe Fossae Lineated Valley Fill.JPG, Coloe Fossae Lineated valley fill, as seen by HiRISE. Scale bar is 500 meters long. Location is Ismenius Lacus quadrangle. ESP 046061 2190lvf.jpg, Lineated valley fill in Ismenius Lacus quadrangle, as seen by HiRISE under HiWish program. 46061 2190closelvf..jpg, Close view of Lineated valley fill in Ismenius Lacus quadrangle, as seen by HiRISE under HiWish program ESP 046061 2190closebrains.jpg, Close, color view of Lineated valley fill in Ismenius Lacus quadrangle, as seen by HiRISE under HiWish program ESP 048658 2150flow.jpg, Valley showing Lineated valley fill, as seen by HiRISE under HiWish program Linear valley flow is caused by ice movements. Location is Casius quadrangle. ESP 050137 2185lvf.jpg, Lineated valley fill in valley, as seen by HiRISE under HiWish program Linear valley flow is ice covered by debris. Location is Ismenius Lacus quadrangle. ESP 050137 2185lvfclosecolor.jpg, Close, color view of lineated valley fill, as seen by HiRISE under HiWish program File:Ccffigurecaptioned.jpg, This series of drawings illustrates why researchers believe many craters are full of ice-rich material. The depth of craters can be predicted based upon the observed diameter. Many craters are almost full, instead of having bowl shape; hence it is believed that they have gained much material since they were formed by impact. Much of the extra material is probably ice that fell from the sky as snow or ice-coated dust. Wikifrettedctxpo5.jpg, Wide CTX view of mesa showing lobate debris apron (LDA) and lineated valley fill. Both are believed to be debris-covered glaciers. Location is Ismenius Lacus quadrangle. Wikifretesp 027639 2210lda.jpg, Close-up of lobate debris apron from the previous CTX image of a mesa. Image shows open-cell brain terrain and closed-cell brain terrain, which is more common. Open-cell brain terrain is thought to hold a core of ice. Image is from HiRISE under HiWish program. File:25246brainseroding.jpg, Closed-cell brain terrain, as seen by HiRISE under the HiWish program. This type of surface is common on lobate debris aprons, concentric crater fill, and lineated valley fill. File:Htalk23815 2215lvfclose.jpg, Open and closed-cell brain terrain, as seen by HiRISE, under HiWish program. Wikildaf03 036777 2287.jpg, Lobate debris aprons (LDAs) around a mesa, as seen by CTX. Mesa and LDAs are labeled so one can see their relationship. Radar studies have determined that LDAs contain ice; therefore these can be important for future colonists of Mars. Location is Ismenius Lacus quadrangle. WikiESP 036777 2290lda.jpg, Close-up of lobate debris apron (LDA), as seen by HiRISE under HiWish program Wikifrettedctxp22.jpg, Wide CTX view showing mesa and buttes with lobate debris aprons and lineated valley fill around them. Location is Ismenius Lacus quadrangle. File:ESP 057389 2195flow.jpg, Lobate debris apron around mesa, as seen by HiRISE under HiWish program File:ESP 057389 2195lda.jpg, Close view of lobate debris apron around mesa, as seen by HiRISE under HiWish program Brain terrain is visible. WikiESP 020769 2225fretted.jpg, Close-up of lineated valley fill (LVF), as seen by HiRISE under HiWish program Note: this is an enlargement of the previous CTX image.


Tongue-shaped glaciers

Some of the glaciers flow down mountains and are shaped by obstacles and valleys; they make a sort of tongue shape. Image:Tongue23141.jpg, Tongue-shaped glacier, as seen by HiRISE under the HiWish program. Ice may exist in the glacier, even today, beneath an insulating layer of dirt. Location is Hellas quadrangle. ESP 036995 1410tongue.jpg, Tongue-shaped glacier, as seen by HiRISE under the HiWish program. Location is Phaethontis quadrangle. Esp 037514 1475wide.jpg, Wide view of several tongue-shaped glaciers on wall of crater, as seen by HiRISE under the HiWish program. The glaciers are of different sizes and lie at different levels. Some of these are greatly enlarged in pictures which follow. Esp 037514 1475tonguesnout.jpg, Close-up of the snouts of two glaciers from the previous image, as seen by HiRISE under the HiWish program. These are towards the bottom left of the previous image. Esp 037514 1475tongues.jpg, Close-up of small glaciers from a previous image, as seen by HiRISE under the HiWish program. Some of these glaciers seem to be just starting to form. Esp 037514 1475tongueedge.jpg, Close-up of the edge of one of the glaciers on the bottom of the wide view from a previous image Picture was taken by HiRISE under the HiWish program. Image:Tongue23141close.jpg, Close-up of tongue-shaped glacier, as seen by HiRISE under the HiWish program. Resolution is about 1 meter, so one can see objects a few meters across in this image. Ice may exist in the glacier, even today, beneath an insulating layer of dirt. Location is Hellas quadrangle. ESP 045070 1440tongues.jpg, Tongue-shaped glaciers indicated with arrows, as seen by HiRISE under the HiWish program 45070 1440glacialsnout.jpg, Close view of snout of glacier, as seen by HiRISE under the HiWish program High center polygons are visible. Box shows size of football field. 45070 1440polygons.jpg, Close view of high center polygons near glacier, as seen by HiRISE under the HiWish program 45070 1440polygonscloseshadows.jpg, Close view of high center polygons near glacier, as seen by HiRISE under the HiWish program Box shows size of football field. 45070 1440polygonshadows.jpg, Close view of high center polygons near glacier, as seen by HiRISE under the HiWish program ESP 047193 1440tongues.jpg, Wide view of tongue-shaped flows, as seen by HiRISE under the HiWish program 47193 1440tonguesclose.jpg, Close view of tongue-shaped flows, as seen by HiRISE under the HiWish program 47193 1440polygons.jpg, Close view of tongue-shaped flows and polygonal terrain (which is labeled), as seen by HiRISE under the HiWish program 47193 1440polygonsclose2.jpg, Close view of polygonal terrain near tongue-shaped flows, as seen by HiRISE under the HiWish program


Hummocky relief

A hummocky relief resembling Northern Sweden's
Veiki moraine A Veiki moraine ( Swedish: Veikimorän) is a type of moraine found in northern Sweden, Troms og Finnmark in Norway, and parts of Canada. This moraine is characterized by forming a hummocky landscape of irregular moraine plateaus with elevated r ...
s has been found in
Nereidum Montes The Nereidum Montes is a mountain range on Mars. It stretches 1,143 km, northeast of Argyre Planitia. It is in the Argyre quadrangle. The mountains are named after a Classical albedo feature. Nereidum Montes has gullies in some areas. ...
. The relief is hypothesized to result from the melting of a Martian glacier. There is no current evidence of any glaciers on any of the volcanoes on Mars


Ice sheet

There is much evidence for a large ice sheet that existed in the south polar region of the planet. A large number of
eskers An esker, eskar, eschar, or os, sometimes called an ''asar'', ''osar'', or ''serpent kame'', is a long, winding ridge of stratified sand and gravel, examples of which occur in glaciated and formerly glaciated regions of Europe and North Amer ...
which form under ice are found there. The field of eskers make up the Dorsa Argentea Formation. The ice sheet had an area twice that of the state of
Texas Texas (, ; Spanish: ''Texas'', ''Tejas'') is a state in the South Central region of the United States. At 268,596 square miles (695,662 km2), and with more than 29.1 million residents in 2020, it is the second-largest U.S. state by ...
. R0502109dorsaargentea.jpg, Ridges, believed to be eskers of the Dorsa Argentea Formation, as seen by Mars Global Surveyor wide angle MOC. White arrows point to the ridges.


Ground ice

Mars has vast glaciers hidden under a layer of rocky debris over wide areas in the mid-latitudes. These glaciers could be large reservoir of life-supporting water on the planet for simple life forms and for future colonists. Research by John Holt, of the University of Texas at Austin, and others found that one of the features examined is three times larger than the city of Los Angeles and up to 800 m thick, and there are many more.NBC News
/ref> Some of the glacial-like features were revealed by NASA's Viking orbiters in the 1970s. Since that time glacial-like features have been studied by more and more advanced instruments. Much better data has been received from
Mars Global Surveyor ''Mars Global Surveyor'' (MGS) was an American robotic space probe developed by NASA's Jet Propulsion Laboratory and launched November 1996. MGS was a global mapping mission that examined the entire planet, from the ionosphere down through t ...
, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter.


Gallery

Image:Moreux Crater moraines.JPG, Moreux Crater moraines and kettle holes, as seen by HIRISE. Location is Ismenius Lacus quadrangle. Esp 037167 1445mantle.jpg, Surface showing appearance with and without mantle covering, as seen by HiRISE, under the HiWish program. Location is Terra Sirenum in Phaethontis quadrangle. Mantle fell from the sky and may be a major source of ice for glaciers. ESP 050176 2245glacier.jpg, Glacier moving out of valley, as seen by HiRISE under HiWish program Location is Ismenius Lacus quadrangle. Wikielephantglacier.jpg,
Romer Lake Romer Lake ( da, Romer Sø) is a land-locked freshwater fjord at the northern end of King Frederick VIII Land, near Greenland's northeastern coast. The Danish military base/ weather station Nord —the only inhabited place in the area— lies t ...
's Elephant Foot Glacier in the Earth's Arctic, as seen by Landsat 8. This picture shows several glaciers that have the same shape as many features on Mars that are believed to also be glaciers. ESP 045560 2230wideglacier.jpg, Glacier coming out of valley, as seen by HiRISE under HiWish program Location is rim of Moreux Crater. Location is Ismenius Lacus quadrangle. Image:Evidence of Glaciers in Fretted terrain.JPG, The arrow in the left picture points to a possibly valley carved by a glacier. The image on the right shows the valley greatly enlarged in a Mars Global Surveyor image. Image:Gullies and tongue-shaped glacier.jpg, Gullies and possible remains of old
glaciers A glacier (; ) is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as ...
in a crater in
Eridania quadrangle The Eridania quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Eridania quadrangle is also referred to as MC-29 (Mars Chart-29). The Eridania quadr ...
, north of the large crater Kepler. One suspected glacier, to the right, has the shape of a tongue. Image was taken by the
Mars Global Surveyor ''Mars Global Surveyor'' (MGS) was an American robotic space probe developed by NASA's Jet Propulsion Laboratory and launched November 1996. MGS was a global mapping mission that examined the entire planet, from the ionosphere down through t ...
under the Public Target program. Image:Glacier as seen by ctx.JPG, Mesa in Ismenius Lacus quadrangle, as seen by CTX. Mesa has several glaciers eroding it. One of the glaciers is seen in greater detail in the next two images from HiRISE. Image from Ismenius Lacus quadrangle. Image:Wide view of glacier showing image field.JPG, Glacier as seen by HiRISE under the HiWish program. Area in rectangle is enlarged in the next photo. Zone of accumulation of snow at the top. Glacier is moving down valley, then spreading out on plain. Evidence for flow comes from the many lines on surface. Location is in Protonilus Mensae in Ismenius Lacus quadrangle. Image:Glacier close up with hirise.JPG, Enlargement of area in rectangle of the previous image. Interpreted as the terminal moraine of a glacier. Picture taken with HiRISE under the HiWish program. Image from Ismenius Lacus quadrangle. Image:ESP_020319flowcontext.jpg, Context for the next image of the end of a flow feature or glacier. Location is Hellas quadrangle. Picture taken with HiRISE under the HiWish program. Image:ESP_020319flowsclose-up.jpg, Close-up of the area in the box in the previous image. Interpreted as the terminal moraine of a glacier. For scale, the box shows the approximate size of a football field. Image taken with HiRISE under the HiWish program. Location is Hellas quadrangle. Image:Glacier moraine in Deuteronilus Mensae.JPG, Possible moraine on the end of a past glacier on a mound in Deuteronilus Mensae, as seen by HiRISE, under the HiWish program. Image:Glacial Cirque in Hellas.JPG, Possible Glacial Cirque in Hellas Planitia, as seen by HiRISE, under the HiWish program. Lines are probably due to downhill movement. Image:ESP020886 with tongue shaped glacier.jpg, Glaciers, as seen by HiRISE, under HiWish program. Glacier on left is thin because it has lost much of its ice. Glacier on the right on the other hand is thick; it still contains a lot of ice that is under a thin layer of dirt and rock. Location is Hellas quadrangle. Image:20769flow_features.jpg, Remains of glaciers, as seen by HiRISE under the HiWish program. Image from Ismenius Lacus quadrangle. Image:Lobate feature with hiwish.JPG, Probable glacier as seen by HiRISE under HiWish program. Radar studies have found that it is made up of almost totally of pure ice. It appears to be moving from the high ground (a mesa) on the right. Location is Ismenius Lacus quadrangle. Image:Tributary Glacier.JPG, Tributary
Glacier A glacier (; ) is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such a ...
, as seen by HiRISE. Location is Ismenius Lacus quadrangle. File:33534_2160drumlins.jpg, Arrows point to drumlin-like shapes that were probably formed under a glacier, as seen by HiRISE, under HiWish program. Some of the shapes require liquid water under the glacier to form. Location is Ismenius Lacus quadrangle. 44410 2195glacier.jpg,
Glacier A glacier (; ) is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such a ...
on a crater floor, as seen by HiRISE under HiWish program The cracks in the glacier may be crevasses. There is also a gully system on the crater wall. Location is Casius quadrangle. ESP 050483 2240glacier.jpg, Glacier, as seen by HiRISE under HiWish program Location is Casius quadrangle. ESP 044874 2205glaciers.jpg, Glaciers moving in two different valleys, as seen by HiRISE under HiWish program Location is Ismenius Lacus quadrangle. ESP 045085 2205flow.jpg, Wide view of flow moving down valley, as seen by HiRISE under HiWish program Location is Ismenius Lacus quadrangle. 45085 2205close.jpg, Close view of part of glacier, as seen by HiRISE under HiWish program Box shows size of football field. Location is Ismenius Lacus quadrangle. 48854 1455grooves.jpg, Grooves caused by movement of glacier, as seen by HiRISE under HiWish program ESP 048854 1455polygonsclosecolor.jpg, Close, color view of polygons, as seen by HiRISE under HiWish program Polygons are common in ice-rich ground.


Interactive Mars map


See also

*
Areography (geography of Mars) Areography, also known as the geography of Mars, is a subfield of planetary science that entails the delineation and characterization of regions on Mars. Areography is mainly focused on what is called physical geography on Earth; that is the dis ...
* Climate of Mars * Deuteronilus Mensae * Dorsa Argentea Formation * Fretted terrain *
Geology of Mars The geology of Mars is the scientific study of the surface, crust, and interior of the planet Mars. It emphasizes the composition, structure, history, and physical processes that shape the planet. It is analogous to the field of terrestrial g ...
*
Glacier A glacier (; ) is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such a ...
* Ismenius Lacus quadrangle * Lineated valley fill * Martian dichotomy * Nilosyrtis Mensae * Protonilus Mensae *
Tharsis quadrangle The Tharsis quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Tharsis quadrangle is also referred to as MC-9 (Mars Chart-9). The name Tharsis ref ...
* Water on Mars


References


External links


Martian Ice - Jim Secosky - 16th Annual International Mars Society Convention
* https://www.youtube.com/watch?v=kpnTh3qlObk . Gordon Wasilewski - Water on Mars - 20th Annual International Mars Society Convention Describes how to get water from ice in the ground * High resolutio
flyover video
by Seán Doran of a glacier in Protonilus Mensae, based on NAS
digital terrain model
se
album
for more
Jeffrey Plaut - Subsurface Ice - 21st Annual International Mars Society Convention
{{Portal bar, Astronomy, Solar System, Science Extraterrestrial bodies of ice Geology of Mars
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
Surface features of Mars Water on Mars