Gibbons–Hawking effect
   HOME

TheInfoList



OR:

In the
theory of general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. G ...
, the Gibbons–Hawking effect is the statement that a
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
can be associated to each solution of the
Einstein field equations In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Einstein in 1915 in the form ...
that contains a causal horizon. It is named after
Gary Gibbons Gary William Gibbons (born 1 July 1946) is a British theoretical physicist. Education Gibbons was born in Coulsdon, Surrey. He was educated at Purley County Grammar School and the University of Cambridge, where in 1969 he became a researc ...
and Stephen Hawking. The term "causal horizon" does not necessarily refer to
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact ob ...
s only, but could also stand for the horizon of the visible universe, for instance. For example, Schwarzschild spacetime contains an event horizon and so can be associated a temperature. In the case of Schwarzschild spacetime this is the temperature T of a black hole of mass M, satisfying T \propto M^ (see also
Hawking radiation Hawking radiation is theoretical black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical a ...
). A second example is
de Sitter space In mathematical physics, ''n''-dimensional de Sitter space (often abbreviated to dS''n'') is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an ''n''-sphere (with its canoni ...
which contains an
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact ob ...
. In this case the temperature T is proportional to the
Hubble parameter Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
H, i.e. T \propto H.


See also

*
Hawking radiation Hawking radiation is theoretical black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical a ...


References

* General relativity Stephen Hawking {{relativity-stub