Gauge–gravity duality
   HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
, string theory is a
theoretical framework A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be s ...
in which the point-like particles of
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
,
charge Charge or charged may refer to: Arts, entertainment, and media Films * '' Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * ''Charge!!'', an album by The Aqu ...
, and other properties determined by the
vibration Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The word comes from Latin ''vibrationem'' ("shaking, brandishing"). The oscillations may be periodic, such as the motion of a pendulum—or random, su ...
al state of the string. In string theory, one of the many vibrational states of the string corresponds to the
graviton In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathem ...
, a
quantum mechanical Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qua ...
particle that carries the
gravitational force In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong ...
. Thus, string theory is a theory of
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics; it deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vi ...
. String theory is a broad and varied subject that attempts to address a number of deep questions of fundamental physics. String theory has contributed a number of advances to
mathematical physics Mathematical physics refers to the development of mathematical methods for application to problems in physics. The '' Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the developm ...
, which have been applied to a variety of problems in
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
physics, early universe
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
,
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies t ...
, and
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the su ...
, and it has stimulated a number of major developments in
pure mathematics Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications, ...
. Because string theory potentially provides a unified description of gravity and particle physics, it is a candidate for a
theory of everything A theory of everything (TOE or TOE/ToE), final theory, ultimate theory, unified field theory or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all asp ...
, a self-contained
mathematical model A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in the natural sciences (such as physics, ...
that describes all
fundamental force In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electro ...
s and forms of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
. Despite much work on these problems, it is not known to what extent string theory describes the real world or how much freedom the theory allows in the choice of its details. String theory was first studied in the late 1960s as a theory of the
strong nuclear force The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the ...
, before being abandoned in favor of
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type ...
. Subsequently, it was realized that the very properties that made string theory unsuitable as a theory of nuclear physics made it a promising candidate for a quantum theory of gravity. The earliest version of string theory,
bosonic string theory Bosonic string theory is the original version of string theory, developed in the late 1960s and named after Satyendra Nath Bose. It is so called because it contains only bosons in the spectrum. In the 1980s, supersymmetry was discovered in the co ...
, incorporated only the class of
particle In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from ...
s known as
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...
s. It later developed into
superstring theory Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings. 'Superstring theory' is a shorthand for supersymmetric string t ...
, which posits a connection called
supersymmetry In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories ...
between bosons and the class of particles called
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
s. Five consistent versions of superstring theory were developed before it was conjectured in the mid-1990s that they were all different limiting cases of a single theory in 11 dimensions known as
M-theory M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witt ...
. In late 1997, theorists discovered an important relationship called the anti-de Sitter/conformal field theory correspondence (AdS/CFT correspondence), which relates string theory to another type of physical theory called a
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
. One of the challenges of string theory is that the full theory does not have a satisfactory definition in all circumstances. Another issue is that the theory is thought to describe an enormous
landscape A landscape is the visible features of an area of land, its landforms, and how they integrate with natural or man-made features, often considered in terms of their aesthetic appeal.''New Oxford American Dictionary''. A landscape includes the ...
of possible universes, which has complicated efforts to develop theories of particle physics based on string theory. These issues have led some in the community to criticize these approaches to physics, and to question the value of continued research on string theory unification.


Fundamentals


Overview

In the 20th century, two theoretical frameworks emerged for formulating the laws of physics. The first is
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
's
general theory of relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the differential geometry, geometric scientific theory, theory of gravitation published by Albert Einstein in 1915 and is the current descr ...
, a theory that explains the force of
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
and the structure of
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
at the macro-level. The other is
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
, a completely different formulation, which uses known
probability Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, ...
principles to describe physical phenomena at the micro-level. By the late 1970s, these two frameworks had proven to be sufficient to explain most of the observed features of the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the univers ...
, from
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, ...
s to
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, a ...
s to the evolution of stars and the universe as a whole. Becker, Becker and Schwarz, p. 1 In spite of these successes, there are still many problems that remain to be solved. One of the deepest problems in modern physics is the problem of
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics; it deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vi ...
. The general theory of relativity is formulated within the framework of
classical physics Classical physics is a group of physics theories that predate modern, more complete, or more widely applicable theories. If a currently accepted theory is considered to be modern, and its introduction represented a major paradigm shift, then the ...
, whereas the other
fundamental forces In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electro ...
are described within the framework of quantum mechanics. A quantum theory of gravity is needed in order to reconcile general relativity with the principles of quantum mechanics, but difficulties arise when one attempts to apply the usual prescriptions of quantum theory to the force of gravity. In addition to the problem of developing a consistent theory of quantum gravity, there are many other fundamental problems in the physics of
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
,
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
s, and the early universe. String theory is a
theoretical framework A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be s ...
that attempts to address these questions and many others. The starting point for string theory is the idea that the point-like particles of
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
can also be modeled as one-dimensional objects called strings. String theory describes how strings propagate through space and interact with each other. In a given version of string theory, there is only one kind of string, which may look like a small loop or segment of ordinary string, and it can vibrate in different ways. On distance scales larger than the string scale, a string will look just like an ordinary particle, with its
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
,
charge Charge or charged may refer to: Arts, entertainment, and media Films * '' Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * ''Charge!!'', an album by The Aqu ...
, and other properties determined by the vibrational state of the string. In this way, all of the different elementary particles may be viewed as
vibrating strings A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrating ...
. In string theory, one of the vibrational states of the string gives rise to the
graviton In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathem ...
, a quantum mechanical particle that carries gravitational force. Thus string theory is a theory of quantum gravity. Becker, Becker and Schwarz, pp. 2–3 One of the main developments of the past several decades in string theory was the discovery of certain 'dualities', mathematical transformations that identify one physical theory with another. Physicists studying string theory have discovered a number of these dualities between different versions of string theory, and this has led to the conjecture that all consistent versions of string theory are subsumed in a single framework known as
M-theory M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witt ...
. Studies of string theory have also yielded a number of results on the nature of black holes and the gravitational interaction. There are certain paradoxes that arise when one attempts to understand the quantum aspects of black holes, and work on string theory has attempted to clarify these issues. In late 1997 this line of work culminated in the discovery of the anti-de Sitter/conformal field theory correspondence or AdS/CFT. This is a theoretical result that relates string theory to other physical theories which are better understood theoretically. The AdS/CFT correspondence has implications for the study of black holes and quantum gravity, and it has been applied to other subjects, including
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: *Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics *Nuclear space *Nuclear ...
and
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the su ...
. Since string theory incorporates all of the fundamental interactions, including gravity, many physicists hope that it will eventually be developed to the point where it fully describes our universe, making it a
theory of everything A theory of everything (TOE or TOE/ToE), final theory, ultimate theory, unified field theory or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all asp ...
. One of the goals of current research in string theory is to find a solution of the theory that reproduces the observed spectrum of elementary particles, with a small
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
, containing
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ...
and a plausible mechanism for
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from  seconds after the conjectured Big Bang singular ...
. While there has been progress toward these goals, it is not known to what extent string theory describes the real world or how much freedom the theory allows in the choice of details. One of the challenges of string theory is that the full theory does not have a satisfactory definition in all circumstances. The scattering of strings is most straightforwardly defined using the techniques of
perturbation theory In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
, but it is not known in general how to define string theory nonperturbatively. It is also not clear whether there is any principle by which string theory selects its
vacuum state In quantum field theory, the quantum vacuum state (also called the quantum vacuum or vacuum state) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. The word zero-point field is sometimes used as ...
, the physical state that determines the properties of our universe. These problems have led some in the community to criticize these approaches to the unification of physics and question the value of continued research on these problems. Woit


Strings

The application of quantum mechanics to physical objects such as the
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical ...
, which are extended in space and time, is known as
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
. In particle physics, quantum field theories form the basis for our understanding of elementary particles, which are modeled as excitations in the fundamental fields. In quantum field theory, one typically computes the probabilities of various physical events using the techniques of
perturbation theory In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
. Developed by
Richard Feynman Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superfl ...
and others in the first half of the twentieth century, perturbative quantum field theory uses special diagrams called
Feynman diagram In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduc ...
s to organize computations. One imagines that these diagrams depict the paths of point-like particles and their interactions. The starting point for string theory is the idea that the point-like particles of quantum field theory can also be modeled as one-dimensional objects called strings. The interaction of strings is most straightforwardly defined by generalizing the perturbation theory used in ordinary quantum field theory. At the level of Feynman diagrams, this means replacing the one-dimensional diagram representing the path of a point particle by a two-dimensional (2D) surface representing the motion of a string. Becker, Becker and Schwarz, p. 6 Unlike in quantum field theory, string theory does not have a full non-perturbative definition, so many of the theoretical questions that physicists would like to answer remain out of reach. In theories of particle physics based on string theory, the characteristic length scale of strings is assumed to be on the order of the Planck length, or meters, the scale at which the effects of quantum gravity are believed to become significant. On much larger length scales, such as the scales visible in physics laboratories, such objects would be indistinguishable from zero-dimensional point particles, and the vibrational state of the string would determine the type of particle. One of the vibrational states of a string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. The original version of string theory was
bosonic string theory Bosonic string theory is the original version of string theory, developed in the late 1960s and named after Satyendra Nath Bose. It is so called because it contains only bosons in the spectrum. In the 1980s, supersymmetry was discovered in the co ...
, but this version described only
bosons In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...
, a class of particles that transmit forces between the matter particles, or
fermions In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
. Bosonic string theory was eventually superseded by theories called superstring theories. These theories describe both bosons and fermions, and they incorporate a theoretical idea called
supersymmetry In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories ...
. In theories with supersymmetry, each boson has a counterpart which is a fermion, and vice versa. There are several versions of superstring theory: type I, type IIA,
type IIB In theoretical physics, type II string theory is a unified term that includes both type IIA strings and type IIB strings theories. Type II string theory accounts for two of the five consistent superstring theories in ten dimensions. Both theorie ...
, and two flavors of
heterotic string In string theory, a heterotic string is a closed string (or loop) which is a hybrid ('heterotic') of a superstring and a bosonic string. There are two kinds of heterotic string, the heterotic SO(32) and the heterotic E8 × E8, abbrevi ...
theory ( and ). The different theories allow different types of strings, and the particles that arise at low energies exhibit different symmetries. For example, the type I theory includes both open strings (which are segments with endpoints) and closed strings (which form closed loops), while types IIA, IIB and heterotic include only closed strings.


Extra dimensions

In everyday life, there are three familiar dimensions (3D) of space: height, width and length. Einstein's general theory of relativity treats time as a dimension on par with the three spatial dimensions; in general relativity, space and time are not modeled as separate entities but are instead unified to a four-dimensional (4D)
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
. In this framework, the phenomenon of gravity is viewed as a consequence of the geometry of spacetime. In spite of the fact that the Universe is well described by 4D spacetime, there are several reasons why physicists consider theories in other dimensions. In some cases, by modeling spacetime in a different number of dimensions, a theory becomes more mathematically tractable, and one can perform calculations and gain general insights more easily. There are also situations where theories in two or three spacetime dimensions are useful for describing phenomena in condensed matter physics. Finally, there exist scenarios in which there could actually be more than 4D of spacetime which have nonetheless managed to escape detection. String theories require
extra dimensions In physics, extra dimensions are proposed additional space or time dimensions beyond the (3 + 1) typical of observed spacetime, such as the first attempts based on the Kaluza–Klein theory. Among theories proposing extra dimensions are: ...
of spacetime for their mathematical consistency. In bosonic string theory, spacetime is 26-dimensional, while in superstring theory it is 10-dimensional, and in
M-theory M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witt ...
it is 11-dimensional. In order to describe real physical phenomena using string theory, one must therefore imagine scenarios in which these extra dimensions would not be observed in experiments. Compactification is one way of modifying the number of dimensions in a physical theory. In compactification, some of the extra dimensions are assumed to "close up" on themselves to form circles. Yau and Nadis, Ch. 6 In the limit where these curled up dimensions become very small, one obtains a theory in which spacetime has effectively a lower number of dimensions. A standard analogy for this is to consider a multidimensional object such as a garden hose. If the hose is viewed from a sufficient distance, it appears to have only one dimension, its length. However, as one approaches the hose, one discovers that it contains a second dimension, its circumference. Thus, an ant crawling on the surface of the hose would move in two dimensions. Compactification can be used to construct models in which spacetime is effectively four-dimensional. However, not every way of compactifying the extra dimensions produces a model with the right properties to describe nature. In a viable model of particle physics, the compact extra dimensions must be shaped like a
Calabi–Yau manifold In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstrin ...
. A Calabi–Yau manifold is a special
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consi ...
which is typically taken to be six-dimensional in applications to string theory. It is named after mathematicians
Eugenio Calabi Eugenio Calabi (born 11 May 1923) is an Italian-born American mathematician and the Thomas A. Scott Professor of Mathematics, Emeritus, at the University of Pennsylvania, specializing in differential geometry, partial differential equations and t ...
and
Shing-Tung Yau Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to become Chair Professor of mathem ...
. Another approach to reducing the number of dimensions is the so-called brane-world scenario. In this approach, physicists assume that the observable universe is a four-dimensional subspace of a higher dimensional space. In such models, the force-carrying bosons of particle physics arise from open strings with endpoints attached to the four-dimensional subspace, while gravity arises from closed strings propagating through the larger ambient space. This idea plays an important role in attempts to develop models of real-world physics based on string theory, and it provides a natural explanation for the weakness of gravity compared to the other fundamental forces.


Dualities

A notable fact about string theory is that the different versions of the theory all turn out to be related in highly nontrivial ways. One of the relationships that can exist between different string theories is called
S-duality In theoretical physics, S-duality (short for strong–weak duality, or Sen duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theoret ...
. This is a relationship that says that a collection of strongly interacting particles in one theory can, in some cases, be viewed as a collection of weakly interacting particles in a completely different theory. Roughly speaking, a collection of particles is said to be strongly interacting if they combine and decay often and weakly interacting if they do so infrequently. Type I string theory turns out to be equivalent by S-duality to the heterotic string theory. Similarly, type IIB string theory is related to itself in a nontrivial way by S-duality. Becker, Becker and Schwarz Another relationship between different string theories is
T-duality In theoretical physics, T-duality (short for target-space duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. In the simplest example of this relationship, one of the theories descr ...
. Here one considers strings propagating around a circular extra dimension. T-duality states that a string propagating around a circle of radius is equivalent to a string propagating around a circle of radius in the sense that all observable quantities in one description are identified with quantities in the dual description. For example, a string has
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
as it propagates around a circle, and it can also wind around the circle one or more times. The number of times the string winds around a circle is called the
winding number In mathematics, the winding number or winding index of a closed curve in the plane around a given point is an integer representing the total number of times that curve travels counterclockwise around the point, i.e., the curve's number of t ...
. If a string has momentum and winding number in one description, it will have momentum and winding number in the dual description. For example, type IIA string theory is equivalent to type IIB string theory via T-duality, and the two versions of heterotic string theory are also related by T-duality. In general, the term ''duality'' refers to a situation where two seemingly different
physical system A physical system is a collection of physical objects. In physics, it is a portion of the physical universe chosen for analysis. Everything outside the system is known as the environment. The environment is ignored except for its effects on the ...
s turn out to be equivalent in a nontrivial way. Two theories related by a duality need not be string theories. For example,
Montonen–Olive duality Montonen–Olive duality or electric–magnetic duality is the oldest known example of strong–weak duality or S-duality according to current terminology. It generalizes the electro-magnetic symmetry of Maxwell's equations by stating that mag ...
is an example of an S-duality relationship between quantum field theories. The AdS/CFT correspondence is an example of a duality that relates string theory to a quantum field theory. If two theories are related by a duality, it means that one theory can be transformed in some way so that it ends up looking just like the other theory. The two theories are then said to be ''dual'' to one another under the transformation. Put differently, the two theories are mathematically different descriptions of the same phenomena.


Branes

In string theory and other related theories, a brane is a physical object that generalizes the notion of a point particle to higher dimensions. For instance, a point particle can be viewed as a brane of dimension zero, while a string can be viewed as a brane of dimension one. It is also possible to consider higher-dimensional branes. In dimension ''p'', these are called ''p''-branes. The word brane comes from the word "membrane" which refers to a two-dimensional brane. Branes are dynamical objects which can propagate through spacetime according to the rules of quantum mechanics. They have mass and can have other attributes such as charge. A ''p''-brane sweeps out a (''p''+1)-dimensional volume in spacetime called its ''worldvolume''. Physicists often study fields analogous to the electromagnetic field which live on the worldvolume of a brane. In string theory,
D-brane In string theory, D-branes, short for ''Dirichlet membrane'', are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes were discovered by Jin Dai, Leigh, and Polch ...
s are an important class of branes that arise when one considers open strings. As an open string propagates through spacetime, its endpoints are required to lie on a D-brane. The letter "D" in D-brane refers to a certain mathematical condition on the system known as the
Dirichlet boundary condition In the mathematical study of differential equations, the Dirichlet (or first-type) boundary condition is a type of boundary condition, named after Peter Gustav Lejeune Dirichlet (1805–1859). When imposed on an ordinary or a partial differential ...
. The study of D-branes in string theory has led to important results such as the AdS/CFT correspondence, which has shed light on many problems in quantum field theory. Branes are frequently studied from a purely mathematical point of view, and they are described as objects of certain categories, such as the
derived category In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction pr ...
of
coherent sheaves In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with refer ...
on a
complex algebraic variety In algebraic geometry, a complex algebraic variety is an algebraic variety (in the scheme sense or otherwise) over the field of complex numbers. Parshin, Alexei N., and Igor Rostislavovich Shafarevich, eds. ''Algebraic Geometry III: Complex Alge ...
, or the
Fukaya category In symplectic topology, a Fukaya category of a symplectic manifold (M, \omega) is a category \mathcal F (M) whose objects are Lagrangian submanifolds of M, and morphisms are Floer chain groups: \mathrm (L_0, L_1) = FC (L_0,L_1). Its finer structu ...
of a
symplectic manifold In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called sym ...
. The connection between the physical notion of a brane and the mathematical notion of a category has led to important mathematical insights in the fields of
algebraic Algebraic may refer to any subject related to algebra in mathematics and related branches like algebraic number theory and algebraic topology. The word algebra itself has several meanings. Algebraic may also refer to: * Algebraic data type, a data ...
and
symplectic geometry Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the ...
and
representation theory Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
.


M-theory

Prior to 1995, theorists believed that there were five consistent versions of superstring theory (type I, type IIA, type IIB, and two versions of heterotic string theory). This understanding changed in 1995 when
Edward Witten Edward Witten (born August 26, 1951) is an American mathematical and theoretical physicist. He is a Professor Emeritus in the School of Natural Sciences at the Institute for Advanced Study in Princeton. Witten is a researcher in string theory, q ...
suggested that the five theories were just special limiting cases of an eleven-dimensional theory called M-theory. Witten's conjecture was based on the work of a number of other physicists, including Ashoke Sen,
Chris Hull Christopher Michael Hull (born 1957) One or more of the preceding sentences incorporates text from the royalsociety.org website where: is a professor of theoretical physics at Imperial College London. Hull is known for his work on string theory ...
,
Paul Townsend Paul Kingsley Townsend FRS (; born 3 March 1951) is a British physicist, currently a Professor of Theoretical Physics in Cambridge University's Department of Applied Mathematics and Theoretical Physics. He is notable for his work on string th ...
, and Michael Duff. His announcement led to a flurry of research activity now known as the
second superstring revolution The history of string theory spans several decades of intense research including two superstring revolutions. Through the combined efforts of many researchers, string theory has developed into a broad and varied subject with connections to quantum ...
. Duff


Unification of superstring theories

In the 1970s, many physicists became interested in
supergravity In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as ...
theories, which combine general relativity with supersymmetry. Whereas general relativity makes sense in any number of dimensions, supergravity places an upper limit on the number of dimensions. In 1978, work by
Werner Nahm Werner Nahm (; born 21 March 1949) is a German theoretical physicist, with the status of professor. He has made contributions to mathematical physics and fundamental theoretical physics. Life and work Werner Nahm attended Gymnasium Philipp ...
showed that the maximum spacetime dimension in which one can formulate a consistent supersymmetric theory is eleven. In the same year, Eugene Cremmer,
Bernard Julia Bernard Julia (born 1952 in Paris) is a French theoretical physicist who has made contributions to the theory of supergravity. He graduated from Université Paris-Sud in 1978, and is directeur de recherche with the CNRS working at the École No ...
, and Joël Scherk of the
École Normale Supérieure École may refer to: * an elementary school in the French educational stages normally followed by secondary education establishments (collège and lycée) * École (river), a tributary of the Seine flowing in région Île-de-France * École, S ...
showed that supergravity not only permits up to eleven dimensions but is in fact most elegant in this maximal number of dimensions. Duff, p. 65 Initially, many physicists hoped that by compactifying eleven-dimensional supergravity, it might be possible to construct realistic models of our four-dimensional world. The hope was that such models would provide a unified description of the four fundamental forces of nature: electromagnetism, the
strong Strong may refer to: Education * The Strong, an educational institution in Rochester, New York, United States * Strong Hall (Lawrence, Kansas), an administrative hall of the University of Kansas * Strong School, New Haven, Connecticut, United S ...
and
weak nuclear force In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interacti ...
s, and gravity. Interest in eleven-dimensional supergravity soon waned as various flaws in this scheme were discovered. One of the problems was that the laws of physics appear to distinguish between clockwise and counterclockwise, a phenomenon known as
chirality Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from ...
. Edward Witten and others observed this chirality property cannot be readily derived by compactifying from eleven dimensions. In the
first superstring revolution The history of string theory spans several decades of intense research including two superstring revolutions. Through the combined efforts of many researchers, string theory has developed into a broad and varied subject with connections to quantu ...
in 1984, many physicists turned to string theory as a unified theory of particle physics and quantum gravity. Unlike supergravity theory, string theory was able to accommodate the chirality of the standard model, and it provided a theory of gravity consistent with quantum effects. Another feature of string theory that many physicists were drawn to in the 1980s and 1990s was its high degree of uniqueness. In ordinary particle theories, one can consider any collection of elementary particles whose classical behavior is described by an arbitrary
Lagrangian Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
. In string theory, the possibilities are much more constrained: by the 1990s, physicists had argued that there were only five consistent supersymmetric versions of the theory. Although there were only a handful of consistent superstring theories, it remained a mystery why there was not just one consistent formulation. However, as physicists began to examine string theory more closely, they realized that these theories are related in intricate and nontrivial ways. They found that a system of strongly interacting strings can, in some cases, be viewed as a system of weakly interacting strings. This phenomenon is known as S-duality. It was studied by Ashoke Sen in the context of heterotic strings in four dimensions and by Chris Hull and Paul Townsend in the context of the type IIB theory. Theorists also found that different string theories may be related by T-duality. This duality implies that strings propagating on completely different spacetime geometries may be physically equivalent. At around the same time, as many physicists were studying the properties of strings, a small group of physicists were examining the possible applications of higher dimensional objects. In 1987, Eric Bergshoeff, Ergin Sezgin, and Paul Townsend showed that eleven-dimensional supergravity includes two-dimensional branes. Intuitively, these objects look like sheets or membranes propagating through the eleven-dimensional spacetime. Shortly after this discovery, Michael Duff, Paul Howe, Takeo Inami, and Kellogg Stelle considered a particular compactification of eleven-dimensional supergravity with one of the dimensions curled up into a circle. In this setting, one can imagine the membrane wrapping around the circular dimension. If the radius of the circle is sufficiently small, then this membrane looks just like a string in ten-dimensional spacetime. Duff and his collaborators showed that this construction reproduces exactly the strings appearing in type IIA superstring theory. Speaking at a string theory conference in 1995, Edward Witten made the surprising suggestion that all five superstring theories were in fact just different limiting cases of a single theory in eleven spacetime dimensions. Witten's announcement drew together all of the previous results on S- and T-duality and the appearance of higher-dimensional branes in string theory. In the months following Witten's announcement, hundreds of new papers appeared on the Internet confirming different parts of his proposal. Today this flurry of work is known as the second superstring revolution. Initially, some physicists suggested that the new theory was a fundamental theory of membranes, but Witten was skeptical of the role of membranes in the theory. In a paper from 1996, Hořava and Witten wrote "As it has been proposed that the eleven-dimensional theory is a supermembrane theory but there are some reasons to doubt that interpretation, we will non-committally call it the M-theory, leaving to the future the relation of M to membranes." In the absence of an understanding of the true meaning and structure of M-theory, Witten has suggested that the ''M'' should stand for "magic", "mystery", or "membrane" according to taste, and the true meaning of the title should be decided when a more fundamental formulation of the theory is known.


Matrix theory

In mathematics, a
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
is a rectangular array of numbers or other data. In physics, a matrix model is a particular kind of physical theory whose mathematical formulation involves the notion of a matrix in an important way. A matrix model describes the behavior of a set of matrices within the framework of quantum mechanics. One important example of a matrix model is the BFSS matrix model proposed by Tom Banks,
Willy Fischler Willy Fischler (born 1949 in Antwerp, Belgium) is a theoretical physicist. He is the Jane and Roland Blumberg Centennial Professor of Physics at the University of Texas at Austin, where he is affiliated with the Weinberg theory group. He is al ...
,
Stephen Shenker Stephen Hart Shenker (born 1953) is an American theoretical physicist who works on string theory. He is a professor at Stanford University and former director of the Stanford Institute for Theoretical Physics. His brother Scott Shenker is a comp ...
, and
Leonard Susskind Leonard Susskind (; born June 16, 1940)his 60th birthday was celebrated with a special symposium at Stanford University.in Geoffrey West's introduction, he gives Suskind's current age as 74 and says his birthday was recent. is an American physicis ...
in 1997. This theory describes the behavior of a set of nine large matrices. In their original paper, these authors showed, among other things, that the low energy limit of this matrix model is described by eleven-dimensional supergravity. These calculations led them to propose that the BFSS matrix model is exactly equivalent to M-theory. The BFSS matrix model can therefore be used as a prototype for a correct formulation of M-theory and a tool for investigating the properties of M-theory in a relatively simple setting. The development of the matrix model formulation of M-theory has led physicists to consider various connections between string theory and a branch of mathematics called
noncommutative geometry Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of ''spaces'' that are locally presented by noncommutative algebras of functions (possibly in some g ...
. This subject is a generalization of ordinary geometry in which mathematicians define new geometric notions using tools from noncommutative algebra. In a paper from 1998,
Alain Connes Alain Connes (; born 1 April 1947) is a French mathematician, and a theoretical physicist, known for his contributions to the study of operator algebras and noncommutative geometry. He is a professor at the , , Ohio State University and Vand ...
,
Michael R. Douglas Michael R. Douglas (born November 19, 1961) is an American theoretical physicist, best known for his work in string theory and mathematical physics. Biography Douglas was born in Baton Rouge, Louisiana, the son of Nancy and Ronald G. Douglas, a m ...
, and
Albert Schwarz Albert Solomonovich Schwarz (; russian: А. С. Шварц; born June 24, 1934) is a Soviet and American mathematician and a theoretical physicist educated in the Soviet Union and now a professor at the University of California, Davis. Early lif ...
showed that some aspects of matrix models and M-theory are described by a
noncommutative quantum field theory In mathematical physics, noncommutative quantum field theory (or quantum field theory on noncommutative spacetime) is an application of noncommutative mathematics to the spacetime of quantum field theory that is an outgrowth of noncommutative ...
, a special kind of physical theory in which spacetime is described mathematically using noncommutative geometry. This established a link between matrix models and M-theory on the one hand, and noncommutative geometry on the other hand. It quickly led to the discovery of other important links between noncommutative geometry and various physical theories.


Black holes

In general relativity, a black hole is defined as a region of spacetime in which the gravitational field is so strong that no particle or radiation can escape. In the currently accepted models of stellar evolution, black holes are thought to arise when massive stars undergo
gravitational collapse Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formatio ...
, and many
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System ...
are thought to contain
supermassive black hole A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical ob ...
s at their centers. Black holes are also important for theoretical reasons, as they present profound challenges for theorists attempting to understand the quantum aspects of gravity. String theory has proved to be an important tool for investigating the theoretical properties of black holes because it provides a framework in which theorists can study their
thermodynamics Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws ...
.


Bekenstein–Hawking formula

In the branch of physics called
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic b ...
,
entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodyna ...
is a measure of the randomness or disorder of a physical system. This concept was studied in the 1870s by the Austrian physicist
Ludwig Boltzmann Ludwig Eduard Boltzmann (; 20 February 1844 – 5 September 1906) was an Austrian physicist and philosopher. His greatest achievements were the development of statistical mechanics, and the statistical explanation of the second law of ther ...
, who showed that the
thermodynamic Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of ...
properties of a gas could be derived from the combined properties of its many constituent
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and b ...
s. Boltzmann argued that by averaging the behaviors of all the different molecules in a gas, one can understand macroscopic properties such as volume, temperature, and pressure. In addition, this perspective led him to give a precise definition of entropy as the
natural logarithm The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
of the number of different states of the molecules (also called ''microstates'') that give rise to the same macroscopic features. In the twentieth century, physicists began to apply the same concepts to black holes. In most systems such as gases, the entropy scales with the volume. In the 1970s, the physicist Jacob Bekenstein suggested that the entropy of a black hole is instead proportional to the ''surface area'' of its
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact ob ...
, the boundary beyond which matter and radiation are lost to its gravitational attraction. When combined with ideas of the physicist Stephen Hawking, Bekenstein's work yielded a precise formula for the entropy of a black hole. The Bekenstein–Hawking formula expresses the entropy as :S= \frac where is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
, is
Boltzmann's constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constant ...
, is the
reduced Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivalen ...
, is
Newton's constant The gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter , is an empirical physical constant involved in t ...
, and is the surface area of the event horizon. Like any physical system, a black hole has an entropy defined in terms of the number of different microstates that lead to the same macroscopic features. The Bekenstein–Hawking entropy formula gives the expected value of the entropy of a black hole, but by the 1990s, physicists still lacked a derivation of this formula by counting microstates in a theory of quantum gravity. Finding such a derivation of this formula was considered an important test of the viability of any theory of quantum gravity such as string theory.


Derivation within string theory

In a paper from 1996,
Andrew Strominger Andrew Eben Strominger (; born 1955) is an American theoretical physicist who is the director of Harvard's Center for the Fundamental Laws of Nature. He has made significant contributions to quantum gravity and string theory. These include his ...
and
Cumrun Vafa Cumrun Vafa ( fa, کامران وفا ; born 1 August 1960) is an Iranian-American theoretical physicist and the Hollis Professor of Mathematics and Natural Philosophy at Harvard University. Early life and education Cumrun Vafa was born in Tehran ...
showed how to derive the Beckenstein–Hawking formula for certain black holes in string theory. Their calculation was based on the observation that D-branes—which look like fluctuating membranes when they are weakly interacting—become dense, massive objects with event horizons when the interactions are strong. In other words, a system of strongly interacting D-branes in string theory is indistinguishable from a black hole. Strominger and Vafa analyzed such D-brane systems and calculated the number of different ways of placing D-branes in spacetime so that their combined mass and charge is equal to a given mass and charge for the resulting black hole. Their calculation reproduced the Bekenstein–Hawking formula exactly, including the factor of . Subsequent work by Strominger, Vafa, and others refined the original calculations and gave the precise values of the "quantum corrections" needed to describe very small black holes. The black holes that Strominger and Vafa considered in their original work were quite different from real astrophysical black holes. One difference was that Strominger and Vafa considered only
extremal black hole In theoretical physics, an extremal black hole is a black hole with the minimum possible mass that is compatible with its charge and angular momentum. The concept of an extremal black hole is theoretical and none have thusfar been observed in na ...
s in order to make the calculation tractable. These are defined as black holes with the lowest possible mass compatible with a given charge. Strominger and Vafa also restricted attention to black holes in five-dimensional spacetime with unphysical supersymmetry. Although it was originally developed in this very particular and physically unrealistic context in string theory, the entropy calculation of Strominger and Vafa has led to a qualitative understanding of how black hole entropy can be accounted for in any theory of quantum gravity. Indeed, in 1998, Strominger argued that the original result could be generalized to an arbitrary consistent theory of quantum gravity without relying on strings or supersymmetry. In collaboration with several other authors in 2010, he showed that some results on black hole entropy could be extended to non-extremal astrophysical black holes.


AdS/CFT correspondence

One approach to formulating string theory and studying its properties is provided by the anti-de Sitter/conformal field theory (AdS/CFT) correspondence. This is a theoretical result which implies that string theory is in some cases equivalent to a quantum field theory. In addition to providing insights into the mathematical structure of string theory, the AdS/CFT correspondence has shed light on many aspects of quantum field theory in regimes where traditional calculational techniques are ineffective. The AdS/CFT correspondence was first proposed by
Juan Maldacena Juan Martín Maldacena (born September 10, 1968) is an Argentine theoretical physicist and the Carl P. Feinberg Professor in the School of Natural Sciences at the Institute for Advanced Study, Princeton. He has made significant contributions to t ...
in late 1997. Important aspects of the correspondence were elaborated in articles by
Steven Gubser Steven Scott Gubser (May 4, 1972 – August 3, 2019) was a professor of physics at Princeton University. His research focused on theoretical particle physics, especially string theory, and the AdS/CFT correspondence. He was a widely cited sc ...
,
Igor Klebanov Igor R. Klebanov (russian: И́горь Ромáнович Клеба́нов; uk, Ігор Романович Клєбанов; born March 29, 1962) is an American theoretical physicist. Since 1989, he has been a faculty member at Princeton Un ...
, and Alexander Markovich Polyakov, and by Edward Witten. By 2010, Maldacena's article had over 7000 citations, becoming the most highly cited article in the field of
high energy physics Particle physics or high energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standa ...
.


Overview of the correspondence

In the AdS/CFT correspondence, the geometry of spacetime is described in terms of a certain
vacuum solution In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or no ...
of Einstein's equation called
anti-de Sitter space In mathematics and physics, ''n''-dimensional anti-de Sitter space (AdS''n'') is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872 ...
. In very elementary terms, anti-de Sitter space is a mathematical model of spacetime in which the notion of distance between points (the
metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathe ...
) is different from the notion of distance in ordinary
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
. It is closely related to
hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. The ...
, which can be viewed as a disk as illustrated on the left. Maldacena 2005, p. 60 This image shows a
tessellation A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of ...
of a disk by triangles and squares. One can define the distance between points of this disk in such a way that all the triangles and squares are the same size and the circular outer boundary is infinitely far from any point in the interior. Maldacena 2005, p. 61 One can imagine a stack of hyperbolic disks where each disk represents the state of the universe at a given time. The resulting geometric object is three-dimensional anti-de Sitter space. It looks like a solid
cylinder A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an ...
in which any cross section is a copy of the hyperbolic disk. Time runs along the vertical direction in this picture. The surface of this cylinder plays an important role in the AdS/CFT correspondence. As with the hyperbolic plane, anti-de Sitter space is curved in such a way that any point in the interior is actually infinitely far from this boundary surface. This construction describes a hypothetical universe with only two space dimensions and one time dimension, but it can be generalized to any number of dimensions. Indeed, hyperbolic space can have more than two dimensions and one can "stack up" copies of hyperbolic space to get higher-dimensional models of anti-de Sitter space. An important feature of anti-de Sitter space is its boundary (which looks like a cylinder in the case of three-dimensional anti-de Sitter space). One property of this boundary is that, within a small region on the surface around any given point, it looks just like
Minkowski space In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the iner ...
, the model of spacetime used in nongravitational physics. One can therefore consider an auxiliary theory in which "spacetime" is given by the boundary of anti-de Sitter space. This observation is the starting point for AdS/CFT correspondence, which states that the boundary of anti-de Sitter space can be regarded as the "spacetime" for a quantum field theory. The claim is that this quantum field theory is equivalent to a gravitational theory, such as string theory, in the bulk anti-de Sitter space in the sense that there is a "dictionary" for translating entities and calculations in one theory into their counterparts in the other theory. For example, a single particle in the gravitational theory might correspond to some collection of particles in the boundary theory. In addition, the predictions in the two theories are quantitatively identical so that if two particles have a 40 percent chance of colliding in the gravitational theory, then the corresponding collections in the boundary theory would also have a 40 percent chance of colliding.


Applications to quantum gravity

The discovery of the AdS/CFT correspondence was a major advance in physicists' understanding of string theory and quantum gravity. One reason for this is that the correspondence provides a formulation of string theory in terms of quantum field theory, which is well understood by comparison. Another reason is that it provides a general framework in which physicists can study and attempt to resolve the paradoxes of black holes. In 1975, Stephen Hawking published a calculation which suggested that black holes are not completely black but emit a dim radiation due to quantum effects near the
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact ob ...
. At first, Hawking's result posed a problem for theorists because it suggested that black holes destroy information. More precisely, Hawking's calculation seemed to conflict with one of the basic
postulates of quantum mechanics The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which ...
, which states that physical systems evolve in time according to the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of th ...
. This property is usually referred to as
unitarity In quantum physics, unitarity is the condition that the time evolution of a quantum state according to the Schrödinger equation is mathematically represented by a unitary operator. This is typically taken as an axiom or basic postulate of qua ...
of time evolution. The apparent contradiction between Hawking's calculation and the unitarity postulate of quantum mechanics came to be known as the
black hole information paradox The black hole information paradox is a puzzle that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from wh ...
. The AdS/CFT correspondence resolves the black hole information paradox, at least to some extent, because it shows how a black hole can evolve in a manner consistent with quantum mechanics in some contexts. Indeed, one can consider black holes in the context of the AdS/CFT correspondence, and any such black hole corresponds to a configuration of particles on the boundary of anti-de Sitter space. These particles obey the usual rules of quantum mechanics and in particular evolve in a unitary fashion, so the black hole must also evolve in a unitary fashion, respecting the principles of quantum mechanics. In 2005, Hawking announced that the paradox had been settled in favor of information conservation by the AdS/CFT correspondence, and he suggested a concrete mechanism by which black holes might preserve information.


Applications to nuclear physics

In addition to its applications to theoretical problems in quantum gravity, the AdS/CFT correspondence has been applied to a variety of problems in quantum field theory. One physical system that has been studied using the AdS/CFT correspondence is the
quark–gluon plasma Quark–gluon plasma (QGP) or quark soup is an interacting localized assembly of quarks and gluons at thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word ''plasma'' signals that free color charges are allowed. In a ...
, an exotic
state of matter In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal, ...
produced in
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
s. This state of matter arises for brief instants when heavy
ions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
such as
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
or
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
nuclei are collided at high energies. Such collisions cause the
quarks A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All common ...
that make up atomic nuclei to deconfine at temperatures of approximately two
trillion ''Trillion'' is a number with two distinct definitions: *1,000,000,000,000, i.e. one million million, or (ten to the twelfth power), as defined on the short scale. This is now the meaning in both American and British English. * 1,000,000,000,00 ...
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ...
, conditions similar to those present at around seconds after the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
. The physics of the quark–gluon plasma is governed by a theory called
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type ...
, but this theory is mathematically intractable in problems involving the quark–gluon plasma. In an article appearing in 2005,
Đàm Thanh Sơn Đàm Thanh Sơn (born 1969) is a Vietnamese theoretical physicist working in quantum chromodynamics, applications of string theory and many-body physics. Early life and education Born in North Vietnam, Bac Ninh. Sơn attended HUS High School ...
and his collaborators showed that the AdS/CFT correspondence could be used to understand some aspects of the quark-gluon plasma by describing it in the language of string theory. By applying the AdS/CFT correspondence, Sơn and his collaborators were able to describe the quark-gluon plasma in terms of black holes in five-dimensional spacetime. The calculation showed that the ratio of two quantities associated with the quark-gluon plasma, the
shear viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inter ...
and volume density of entropy, should be approximately equal to a certain universal constant. In 2008, the predicted value of this ratio for the quark-gluon plasma was confirmed at the
Relativistic Heavy Ion Collider The Relativistic Heavy Ion Collider (RHIC ) is the first and one of only two operating heavy-ion colliders, and the only spin-polarized proton collider ever built. Located at Brookhaven National Laboratory (BNL) in Upton, New York, and used by a ...
at
Brookhaven National Laboratory Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base and Japanese internment c ...
.


Applications to condensed matter physics

The AdS/CFT correspondence has also been used to study aspects of condensed matter physics. Over the decades,
experimental An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs when a ...
condensed matter physicists have discovered a number of exotic states of matter, including
superconductors Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
and superfluids. These states are described using the formalism of quantum field theory, but some phenomena are difficult to explain using standard field theoretic techniques. Some condensed matter theorists including Subir Sachdev hope that the AdS/CFT correspondence will make it possible to describe these systems in the language of string theory and learn more about their behavior. So far some success has been achieved in using string theory methods to describe the transition of a superfluid to an insulator. A superfluid is a system of
electrically neutral Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons resp ...
atoms Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas ...
that flows without any
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of ...
. Such systems are often produced in the laboratory using
liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
, but recently experimentalists have developed new ways of producing artificial superfluids by pouring trillions of cold atoms into a lattice of criss-crossing
lasers A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
. These atoms initially behave as a superfluid, but as experimentalists increase the intensity of the lasers, they become less mobile and then suddenly transition to an insulating state. During the transition, the atoms behave in an unusual way. For example, the atoms slow to a halt at a rate that depends on the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
and on Planck's constant, the fundamental parameter of quantum mechanics, which does not enter into the description of the other phases. This behavior has recently been understood by considering a dual description where properties of the fluid are described in terms of a higher dimensional black hole.


Phenomenology

In addition to being an idea of considerable theoretical interest, string theory provides a framework for constructing models of real-world physics that combine general relativity and particle physics.
Phenomenology Phenomenology may refer to: Art * Phenomenology (architecture), based on the experience of building materials and their sensory properties Philosophy * Phenomenology (philosophy), a branch of philosophy which studies subjective experiences and a ...
is the branch of theoretical physics in which physicists construct realistic models of nature from more abstract theoretical ideas.
String phenomenology String phenomenology is a branch of theoretical physics that uses tools from mathematics and computer science to study the implications of string theory for particle physics and cosmology. In cosmology, string phenomenology studies, among others ...
is the part of string theory that attempts to construct realistic or semi-realistic models based on string theory. Partly because of theoretical and mathematical difficulties and partly because of the extremely high energies needed to test these theories experimentally, there is so far no experimental evidence that would unambiguously point to any of these models being a correct fundamental description of nature. This has led some in the community to criticize these approaches to unification and question the value of continued research on these problems.


Particle physics

The currently accepted theory describing elementary particles and their interactions is known as the standard model of particle physics. This theory provides a unified description of three of the fundamental forces of nature: electromagnetism and the strong and weak nuclear forces. Despite its remarkable success in explaining a wide range of physical phenomena, the standard model cannot be a complete description of reality. This is because the standard model fails to incorporate the force of gravity and because of problems such as the
hierarchy problem In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than grav ...
and the inability to explain the structure of fermion masses or dark matter. String theory has been used to construct a variety of models of particle physics going beyond the standard model. Typically, such models are based on the idea of compactification. Starting with the ten- or eleven-dimensional spacetime of string or M-theory, physicists postulate a shape for the extra dimensions. By choosing this shape appropriately, they can construct models roughly similar to the standard model of particle physics, together with additional undiscovered particles. One popular way of deriving realistic physics from string theory is to start with the heterotic theory in ten dimensions and assume that the six extra dimensions of spacetime are shaped like a six-dimensional Calabi–Yau manifold. Such compactifications offer many ways of extracting realistic physics from string theory. Other similar methods can be used to construct realistic or semi-realistic models of our four-dimensional world based on M-theory.


Cosmology

The Big Bang theory is the prevailing
cosmological Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
model for the universe from the earliest known periods through its subsequent large-scale evolution. Despite its success in explaining many observed features of the universe including galactic
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in fr ...
s, the relative abundance of light elements such as
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
and
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
, and the existence of a
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
, there are several questions that remain unanswered. For example, the standard Big Bang model does not explain why the universe appears to be the same in all directions, why it appears flat on very large distance scales, or why certain hypothesized particles such as magnetic monopoles are not observed in experiments. Currently, the leading candidate for a theory going beyond the Big Bang is the theory of cosmic inflation. Developed by
Alan Guth Alan Harvey Guth (; born February 27, 1947) is an American theoretical physicist and cosmologist. Guth has researched elementary particle theory (and how particle theory is applicable to the early universe). He is Victor Weisskopf Professor of ...
and others in the 1980s, inflation postulates a period of extremely rapid accelerated expansion of the universe prior to the expansion described by the standard Big Bang theory. The theory of cosmic inflation preserves the successes of the Big Bang while providing a natural explanation for some of the mysterious features of the universe. The theory has also received striking support from observations of the cosmic microwave background, the radiation that has filled the sky since around 380,000 years after the Big Bang. In the theory of inflation, the rapid initial expansion of the universe is caused by a hypothetical particle called the
inflaton The inflaton field is a hypothetical scalar field which is conjectured to have driven cosmic inflation in the very early universe. The field, originally postulated by Alan Guth, provides a mechanism by which a period of rapid expansion from 10&m ...
. The exact properties of this particle are not fixed by the theory but should ultimately be derived from a more fundamental theory such as string theory. Indeed, there have been a number of attempts to identify an inflaton within the spectrum of particles described by string theory and to study inflation using string theory. While these approaches might eventually find support in observational data such as measurements of the cosmic microwave background, the application of string theory to cosmology is still in its early stages.


Connections to mathematics

In addition to influencing research in
theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experim ...
, string theory has stimulated a number of major developments in
pure mathematics Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications, ...
. Like many developing ideas in theoretical physics, string theory does not at present have a mathematically rigorous formulation in which all of its concepts can be defined precisely. As a result, physicists who study string theory are often guided by physical intuition to conjecture relationships between the seemingly different mathematical structures that are used to formalize different parts of the theory. These conjectures are later proved by mathematicians, and in this way, string theory serves as a source of new ideas in pure mathematics.


Mirror symmetry

After Calabi–Yau manifolds had entered physics as a way to compactify extra dimensions in string theory, many physicists began studying these manifolds. In the late 1980s, several physicists noticed that given such a compactification of string theory, it is not possible to reconstruct uniquely a corresponding Calabi–Yau manifold. Instead, two different versions of string theory, type IIA and type IIB, can be compactified on completely different Calabi–Yau manifolds giving rise to the same physics. In this situation, the manifolds are called mirror manifolds, and the relationship between the two physical theories is called
mirror symmetry In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2D ther ...
. Regardless of whether Calabi–Yau compactifications of string theory provide a correct description of nature, the existence of the mirror duality between different string theories has significant mathematical consequences. The Calabi–Yau manifolds used in string theory are of interest in pure mathematics, and mirror symmetry allows mathematicians to solve problems in
enumerative geometry In mathematics, enumerative geometry is the branch of algebraic geometry concerned with counting numbers of solutions to geometric questions, mainly by means of intersection theory. History The problem of Apollonius is one of the earliest examp ...
, a branch of mathematics concerned with counting the numbers of solutions to geometric questions. Enumerative geometry studies a class of geometric objects called
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
which are defined by the vanishing of
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exampl ...
s. For example, the
Clebsch cubic In mathematics, the Clebsch diagonal cubic surface, or Klein's icosahedral cubic surface, is a non-singular cubic surface, studied by and , all of whose 27 exceptional lines can be defined over the real numbers. The term Klein's icosahedral sur ...
illustrated on the right is an algebraic variety defined using a certain polynomial of degree three in four variables. A celebrated result of nineteenth-century mathematicians
Arthur Cayley Arthur Cayley (; 16 August 1821 – 26 January 1895) was a prolific British mathematician who worked mostly on algebra. He helped found the modern British school of pure mathematics. As a child, Cayley enjoyed solving complex maths problem ...
and George Salmon states that there are exactly 27 straight lines that lie entirely on such a surface. Generalizing this problem, one can ask how many lines can be drawn on a quintic Calabi–Yau manifold, such as the one illustrated above, which is defined by a polynomial of degree five. This problem was solved by the nineteenth-century German mathematician
Hermann Schubert __NOTOC__ Hermann Cäsar Hannibal Schubert (22 May 1848 – 20 July 1911) was a German mathematician. Schubert was one of the leading developers of enumerative geometry, which considers those parts of algebraic geometry that involve a finite n ...
, who found that there are exactly 2,875 such lines. In 1986, geometer Sheldon Katz proved that the number of curves, such as circles, that are defined by polynomials of degree two and lie entirely in the quintic is 609,250. By the year 1991, most of the classical problems of enumerative geometry had been solved and interest in enumerative geometry had begun to diminish. Yau and Nadis, p. 169 The field was reinvigorated in May 1991 when physicists
Philip Candelas Philip Candelas, (born 24 October 1951, London, UK) is a British physicist and mathematician. After 20 years at the University of Texas at Austin, he served as Rouse Ball Professor of Mathematics at the University of Oxford until 2020 and is a Fe ...
,
Xenia de la Ossa Xenia de la Ossa Osegueda (born 30 June 1958, San José, Costa Rica) is a theoretical physicist whose research focuses on mathematical structures that arise in string theory. She is a professor at Oxford's Mathematical Institute. Academic car ...
, Paul Green, and Linda Parks showed that mirror symmetry could be used to translate difficult mathematical questions about one Calabi–Yau manifold into easier questions about its mirror. In particular, they used mirror symmetry to show that a six-dimensional Calabi–Yau manifold can contain exactly 317,206,375 curves of degree three. In addition to counting degree-three curves, Candelas and his collaborators obtained a number of more general results for counting rational curves which went far beyond the results obtained by mathematicians. Originally, these results of Candelas were justified on physical grounds. However, mathematicians generally prefer rigorous proofs that do not require an appeal to physical intuition. Inspired by physicists' work on mirror symmetry, mathematicians have therefore constructed their own arguments proving the enumerative predictions of mirror symmetry. Today mirror symmetry is an active area of research in mathematics, and mathematicians are working to develop a more complete mathematical understanding of mirror symmetry based on physicists' intuition. Major approaches to mirror symmetry include the homological mirror symmetry program of
Maxim Kontsevich Maxim Lvovich Kontsevich (russian: Макси́м Льво́вич Конце́вич, ; born 25 August 1964) is a Russian and French mathematician and mathematical physicist. He is a professor at the Institut des Hautes Études Scientifiques an ...
and the
SYZ conjecture The SYZ conjecture is an attempt to understand the mirror symmetry conjecture, an issue in theoretical physics and mathematics. The original conjecture was proposed in a paper by Strominger, Yau, and Zaslow, entitled "Mirror Symmetry is ''T''- ...
of Andrew Strominger, Shing-Tung Yau, and
Eric Zaslow Eric Zaslow is an American mathematical physicist at Northwestern University. Biography Zaslow attended Harvard University, earning his Ph.D. in physics in 1995, with thesis "Kinks, twists, and folds : exploring the geometric musculature of q ...
.


Monstrous moonshine

Group theory In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen ...
is the branch of mathematics that studies the concept of
symmetry Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
. For example, one can consider a geometric shape such as an equilateral triangle. There are various operations that one can perform on this triangle without changing its shape. One can rotate it through 120°, 240°, or 360°, or one can reflect in any of the lines labeled , , or in the picture. Each of these operations is called a ''symmetry'', and the collection of these symmetries satisfies certain technical properties making it into what mathematicians call a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
. In this particular example, the group is known as the
dihedral group In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, ...
of
order Order, ORDER or Orders may refer to: * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of ...
6 because it has six elements. A general group may describe finitely many or infinitely many symmetries; if there are only finitely many symmetries, it is called a
finite group Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or ma ...
. Mathematicians often strive for a
classification Classification is a process related to categorization, the process in which ideas and objects are recognized, differentiated and understood. Classification is the grouping of related facts into classes. It may also refer to: Business, organizat ...
(or list) of all mathematical objects of a given type. It is generally believed that finite groups are too diverse to admit a useful classification. A more modest but still challenging problem is to classify all finite ''simple'' groups. These are finite groups that may be used as building blocks for constructing arbitrary finite groups in the same way that
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s can be used to construct arbitrary whole numbers by taking products. One of the major achievements of contemporary group theory is the
classification of finite simple groups In mathematics, the classification of the finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else i ...
, a mathematical theorem that provides a list of all possible finite simple groups. This classification theorem identifies several infinite families of groups as well as 26 additional groups which do not fit into any family. The latter groups are called the "sporadic" groups, and each one owes its existence to a remarkable combination of circumstances. The largest sporadic group, the so-called
monster group In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order    24632059761121331719232931414759 ...
, has over elements, more than a thousand times the number of atoms in the Earth. A seemingly unrelated construction is the -function of
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Ma ...
. This object belongs to a special class of functions called
modular function In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory of ...
s, whose graphs form a certain kind of repeating pattern. Although this function appears in a branch of mathematics that seems very different from the theory of finite groups, the two subjects turn out to be intimately related. In the late 1970s, mathematicians John McKay and John Thompson noticed that certain numbers arising in the analysis of the monster group (namely, the dimensions of its
irreducible representation In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation (\rho, V) or irrep of an algebraic structure A is a nonzero representation that has no proper nontrivial subrepresentation (\rho, _ ...
s) are related to numbers that appear in a formula for the -function (namely, the coefficients of its
Fourier series A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or '' ...
). This relationship was further developed by
John Horton Conway John Horton Conway (26 December 1937 – 11 April 2020) was an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branches ...
and Simon Norton who called it
monstrous moonshine In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group ''M'' and modular functions, in particular, the ''j'' function. The term was coined by John Conway and Simon P. Norton in 1979. ...
because it seemed so far fetched. In 1992,
Richard Borcherds Richard Ewen Borcherds (; born 29 November 1959) is a British mathematician currently working in quantum field theory. He is known for his work in lattices, group theory, and infinite-dimensional algebras, for which he was awarded the Fields Me ...
constructed a bridge between the theory of modular functions and finite groups and, in the process, explained the observations of McKay and Thompson. Borcherds' work used ideas from string theory in an essential way, extending earlier results of
Igor Frenkel Igor Borisovich Frenkel (russian: Игорь Борисович Френкель; born April 22, 1952) is a Russian-American mathematician at Yale University working in representation theory and mathematical physics. Frenkel emigrated to the ...
,
James Lepowsky James "Jim" Lepowsky (born July 5, 1944, in New York City) is a professor of mathematics at Rutgers University, New Jersey. Previously he taught at Yale University. He received his Ph.D. from M.I.T. in 1970 where his advisors were Bertram Kost ...
, and
Arne Meurman Arne Meurman (born 6 April 1956) is a Swedish mathematician working on finite groups and vertex operator algebras. Currently, he is a professor at Lund University. He is best known for constructing the monster vertex algebra together with Igor ...
, who had realized the monster group as the symmetries of a particular version of string theory. In 1998, Borcherds was awarded the
Fields medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of the International Mathematical Union (IMU), a meeting that takes place every four years. The name of the award h ...
for his work. Since the 1990s, the connection between string theory and moonshine has led to further results in mathematics and physics. In 2010, physicists Tohru Eguchi,
Hirosi Ooguri is a theoretical physicist working on quantum field theory, quantum gravity, superstring theory, and their interfaces with mathematics. He is Fred Kavli Professor of Theoretical Physics and Mathematics and the Founding Director of the Walter Burk ...
, and Yuji Tachikawa discovered connections between a different sporadic group, the Mathieu group , and a certain version of string theory. Miranda Cheng, John Duncan, and Jeffrey A. Harvey proposed a generalization of this moonshine phenomenon called
umbral moonshine In mathematics, umbral moonshine is a mysterious connection between Niemeier lattices and Ramanujan's mock theta functions. It is a generalization of the Mathieu moonshine phenomenon connecting representations of the Mathieu group M24 In ...
, and their conjecture was proved mathematically by Duncan, Michael Griffin, and
Ken Ono Ken Ono (born March 20, 1968) is a Japanese-American mathematician who specializes in number theory, especially in integer partitions, modular forms, umbral moonshine, the Riemann Hypothesis and the fields of interest to Srinivasa Ramanujan. He ...
. Witten has also speculated that the version of string theory appearing in monstrous moonshine might be related to a certain simplified model of gravity in three spacetime dimensions.


History


Early results

Some of the structures reintroduced by string theory arose for the first time much earlier as part of the program of classical unification started by
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
. The first person to add a fifth dimension to a theory of gravity was
Gunnar Nordström Gunnar Nordström (12 March 1881 – 24 December 1923) was a Finnish theoretical physicist best remembered for his theory of gravitation, which was an early competitor of general relativity. Nordström is often designated by modern writers as ' ...
in 1914, who noted that gravity in five dimensions describes both gravity and electromagnetism in four. Nordström attempted to unify electromagnetism with his theory of gravitation, which was however superseded by Einstein's general relativity in 1919. Thereafter, German mathematician Theodor Kaluza combined the fifth dimension with
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, and only Kaluza is usually credited with the idea. In 1926, the Swedish physicist
Oskar Klein Oskar Benjamin Klein (; 15 September 1894 – 5 February 1977) was a Swedish theoretical physicist. Biography Klein was born in Danderyd outside Stockholm, son of the chief rabbi of Stockholm, Gottlieb Klein from Humenné in Kingdom of Hung ...
gave a physical interpretation of the unobservable extra dimension—it is wrapped into a small circle. Einstein introduced a non-symmetric
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allow ...
, while much later Brans and Dicke added a scalar component to gravity. These ideas would be revived within string theory, where they are demanded by consistency conditions. String theory was originally developed during the late 1960s and early 1970s as a never completely successful theory of
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ...
s, the
subatomic particle In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a p ...
s like the
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
that feel the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
. In the 1960s,
Geoffrey Chew Geoffrey Foucar Chew (; June 5, 1924 – April 12, 2019) was an American theoretical physicist. He is known for his bootstrap theory of strong interactions. Life Chew worked as a professor of physics at the UC Berkeley since 1957 and was an e ...
and Steven Frautschi discovered that the
meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, ...
s make families called Regge trajectories with masses related to spins in a way that was later understood by
Yoichiro Nambu was a Japanese-American physicist and professor at the University of Chicago. Known for his contributions to the field of theoretical physics, he was awarded half of the Nobel Prize in Physics in 2008 for the discovery in 1960 of the mechanism ...
,
Holger Bech Nielsen Holger Bech Nielsen (born 25 August 1941) is a Danish theoretical physicist and professor emeritus at the Niels Bohr Institute, at the University of Copenhagen, where he started studying physics in 1961. Work Nielsen has made original contribut ...
and
Leonard Susskind Leonard Susskind (; born June 16, 1940)his 60th birthday was celebrated with a special symposium at Stanford University.in Geoffrey West's introduction, he gives Suskind's current age as 74 and says his birthday was recent. is an American physicis ...
to be the relationship expected from rotating strings. Chew advocated making a theory for the interactions of these trajectories that did not presume that they were composed of any fundamental particles, but would construct their interactions from self-consistency conditions on the
S-matrix In physics, the ''S''-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT). More forma ...
. The S-matrix approach was started by
Werner Heisenberg Werner Karl Heisenberg () (5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the main pioneers of the theory of quantum mechanics. He published his work in 1925 in a Über quantentheoretische Umdeutung kinematis ...
in the 1940s as a way of constructing a theory that did not rely on the local notions of space and time, which Heisenberg believed break down at the nuclear scale. While the scale was off by many orders of magnitude, the approach he advocated was ideally suited for a theory of quantum gravity. Working with experimental data, R. Dolen, D. Horn and C. Schmid developed some sum rules for hadron exchange. When a particle and
antiparticle In particle physics, every type of particle is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the electron is the positron (also known as an antie ...
scatter, virtual particles can be exchanged in two qualitatively different ways. In the s-channel, the two particles annihilate to make temporary intermediate states that fall apart into the final state particles. In the t-channel, the particles exchange intermediate states by emission and absorption. In field theory, the two contributions add together, one giving a continuous background contribution, the other giving peaks at certain energies. In the data, it was clear that the peaks were stealing from the background—the authors interpreted this as saying that the t-channel contribution was dual to the s-channel one, meaning both described the whole amplitude and included the other. The result was widely advertised by
Murray Gell-Mann Murray Gell-Mann (; September 15, 1929 – May 24, 2019) was an American physicist who received the 1969 Nobel Prize in Physics for his work on the theory of elementary particles. He was the Robert Andrews Millikan Professor of Theoretical ...
, leading
Gabriele Veneziano Gabriele Veneziano (; ; born 7 September 1942) is an Italian theoretical physicist widely considered the father of string theory. He has conducted most of his scientific activities at CERN in Geneva, Switzerland, and held the Chair of Elementa ...
to construct a
scattering amplitude In quantum physics, the scattering amplitude is the probability amplitude of the outgoing spherical wave relative to the incoming plane wave in a stationary-state scattering process.gamma function In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers excep ...
— which was widely used in Regge theory. By manipulating combinations of gamma functions, Veneziano was able to find a consistent scattering amplitude with poles on straight lines, with mostly positive residues, which obeyed duality and had the appropriate Regge scaling at high energy. The amplitude could fit near-beam scattering data as well as other Regge type fits and had a suggestive integral representation that could be used for generalization. Over the next years, hundreds of physicists worked to complete the bootstrap program for this model, with many surprises. Veneziano himself discovered that for the scattering amplitude to describe the scattering of a particle that appears in the theory, an obvious self-consistency condition, the lightest particle must be a
tachyon A tachyon () or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of physics. If such partic ...
. Miguel Virasoro and Joel Shapiro found a different amplitude now understood to be that of closed strings, while Ziro Koba and
Holger Nielsen Holger Louis Nielsen (18 December 1866 in Copenhagen – 26 January 1955 in Hellerup) was a Danish fencer, sport shooter, and athlete. He competed at the 1896 Summer Olympics in Athens. He is probably best known for drawing up the firs ...
generalized Veneziano's integral representation to multiparticle scattering. Veneziano and
Sergio Fubini Sergio Fubini (December 31, 1928 – January 6, 2005) was an Italian theoretical physicist. He was one of the pioneers of string theory. He was engaged in peace activism in the Middle East. Biography Fubini was born in Turin. In 1938, he fled t ...
introduced an operator formalism for computing the scattering amplitudes that was a forerunner of world-sheet conformal theory, while Virasoro understood how to remove the poles with wrong-sign residues using a constraint on the states. Claud Lovelace calculated a loop amplitude, and noted that there is an inconsistency unless the dimension of the theory is 26. Charles Thorn, Peter Goddard and
Richard Brower Richard is a male given name. It originates, via Old French, from Old Frankish and is a compound of the words descending from Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'strong ...
went on to prove that there are no wrong-sign propagating states in dimensions less than or equal to 26. In 1969–70,
Yoichiro Nambu was a Japanese-American physicist and professor at the University of Chicago. Known for his contributions to the field of theoretical physics, he was awarded half of the Nobel Prize in Physics in 2008 for the discovery in 1960 of the mechanism ...
,
Holger Bech Nielsen Holger Bech Nielsen (born 25 August 1941) is a Danish theoretical physicist and professor emeritus at the Niels Bohr Institute, at the University of Copenhagen, where he started studying physics in 1961. Work Nielsen has made original contribut ...
, and
Leonard Susskind Leonard Susskind (; born June 16, 1940)his 60th birthday was celebrated with a special symposium at Stanford University.in Geoffrey West's introduction, he gives Suskind's current age as 74 and says his birthday was recent. is an American physicis ...
recognized that the theory could be given a description in space and time in terms of strings. The scattering amplitudes were derived systematically from the action principle by Peter Goddard, Jeffrey Goldstone,
Claudio Rebbi Claudio is an Italian and Spanish first name. In Portuguese it is accented Cláudio. In Catalan and Occitan it is Claudi, while in Romanian it is Claudiu. Origin and history Claudius was the name of an eminent Roman gens, the most important me ...
, and Charles Thorn, giving a space-time picture to the vertex operators introduced by Veneziano and Fubini and a geometrical interpretation to the Virasoro conditions. In 1971, Pierre Ramond added fermions to the model, which led him to formulate a two-dimensional supersymmetry to cancel the wrong-sign states. John Schwarz and
André Neveu André Neveu (; born 28 August 1946) is a French physicist working on string theory and quantum field theory who coinvented the Neveu–Schwarz algebra and the Gross–Neveu model. Biography Neveu studied in Paris at the École Normale Supér ...
added another sector to the fermi theory a short time later. In the fermion theories, the critical dimension was 10. Stanley Mandelstam formulated a world sheet conformal theory for both the bose and fermi case, giving a two-dimensional field theoretic path-integral to generate the operator formalism.
Michio Kaku Michio Kaku (, ; born January 24, 1947) is an American theoretical physicist, futurist, and popularizer of science ( science communicator). He is a professor of theoretical physics in the City College of New York and CUNY Graduate Center. Kak ...
and Keiji Kikkawa gave a different formulation of the bosonic string, as a
string field theory String or strings may refer to: * String (structure), a long flexible structure made from threads twisted together, which is used to tie, bind, or hang other objects Arts, entertainment, and media Films * ''Strings'' (1991 film), a Canadian ani ...
, with infinitely many particle types and with fields taking values not on points, but on loops and curves. In 1974, Tamiaki Yoneya discovered that all the known string theories included a massless spin-two particle that obeyed the correct Ward identities to be a graviton. John Schwarz and Joël Scherk came to the same conclusion and made the bold leap to suggest that string theory was a theory of gravity, not a theory of hadrons. They reintroduced Kaluza–Klein theory as a way of making sense of the extra dimensions. At the same time,
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type ...
was recognized as the correct theory of hadrons, shifting the attention of physicists and apparently leaving the bootstrap program in the dustbin of history. String theory eventually made it out of the dustbin, but for the following decade, all work on the theory was completely ignored. Still, the theory continued to develop at a steady pace thanks to the work of a handful of devotees.
Ferdinando Gliozzi Ferdinando Gliozzi (; born 1940) is a string theorist at the Istituto Nazionale di Fisica Nucleare. Along with David Olive and Joël Scherk, he proposed the GSO projection The GSO projection (named after Ferdinando Gliozzi, Joël Scherk, and ...
, Joël Scherk, and David Olive realized in 1977 that the original Ramond and Neveu Schwarz-strings were separately inconsistent and needed to be combined. The resulting theory did not have a tachyon and was proven to have space-time supersymmetry by John Schwarz and Michael Green in 1984. The same year, Alexander Polyakov gave the theory a modern path integral formulation, and went on to develop conformal field theory extensively. In 1979, Daniel Friedan showed that the equations of motions of string theory, which are generalizations of the
Einstein equations In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Einstein in 1915 in the form ...
of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, emerge from the
renormalization group In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in t ...
equations for the two-dimensional field theory. Schwarz and Green discovered T-duality, and constructed two superstring theories—IIA and IIB related by T-duality, and type I theories with open strings. The consistency conditions had been so strong, that the entire theory was nearly uniquely determined, with only a few discrete choices.


First superstring revolution

In the early 1980s,
Edward Witten Edward Witten (born August 26, 1951) is an American mathematical and theoretical physicist. He is a Professor Emeritus in the School of Natural Sciences at the Institute for Advanced Study in Princeton. Witten is a researcher in string theory, q ...
discovered that most theories of quantum gravity could not accommodate
chiral Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from i ...
fermions like the neutrino. This led him, in collaboration with Luis Álvarez-Gaumé, to study violations of the conservation laws in gravity theories with anomalies, concluding that type I string theories were inconsistent. Green and Schwarz discovered a contribution to the anomaly that Witten and Alvarez-Gaumé had missed, which restricted the gauge group of the type I string theory to be SO(32). In coming to understand this calculation, Edward Witten became convinced that string theory was truly a consistent theory of gravity, and he became a high-profile advocate. Following Witten's lead, between 1984 and 1986, hundreds of physicists started to work in this field, and this is sometimes called the
first superstring revolution The history of string theory spans several decades of intense research including two superstring revolutions. Through the combined efforts of many researchers, string theory has developed into a broad and varied subject with connections to quantu ...
. During this period,
David Gross David Jonathan Gross (; born February 19, 1941) is an American theoretical physicist and string theorist. Along with Frank Wilczek and David Politzer, he was awarded the 2004 Nobel Prize in Physics for their discovery of asymptotic freedom. ...
, Jeffrey Harvey, Emil Martinec, and
Ryan Rohm Ryan Milton Rohm (born 22 December 1957, Gastonia, North Carolina) is an American string theorist. He is one of four physicists known as the Princeton string quartet, and is responsible for the development of heterotic string theory along with Davi ...
discovered heterotic strings. The gauge group of these closed strings was two copies of E8, and either copy could easily and naturally include the standard model.
Philip Candelas Philip Candelas, (born 24 October 1951, London, UK) is a British physicist and mathematician. After 20 years at the University of Texas at Austin, he served as Rouse Ball Professor of Mathematics at the University of Oxford until 2020 and is a Fe ...
, Gary Horowitz,
Andrew Strominger Andrew Eben Strominger (; born 1955) is an American theoretical physicist who is the director of Harvard's Center for the Fundamental Laws of Nature. He has made significant contributions to quantum gravity and string theory. These include his ...
and Edward Witten found that the Calabi–Yau manifolds are the compactifications that preserve a realistic amount of supersymmetry, while
Lance Dixon Lance Jenkins Dixon (born 22 June 1961, in Pasadena, California) is an American theoretical particle physicist. He is a professor in the SLAC Theory Group at the Stanford Linear Accelerator Center (SLAC) at Stanford University. Dixon received in ...
and others worked out the physical properties of
orbifolds In the mathematical disciplines of topology and geometry, an orbifold (for "orbit-manifold") is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space. D ...
, distinctive geometrical singularities allowed in string theory.
Cumrun Vafa Cumrun Vafa ( fa, کامران وفا ; born 1 August 1960) is an Iranian-American theoretical physicist and the Hollis Professor of Mathematics and Natural Philosophy at Harvard University. Early life and education Cumrun Vafa was born in Tehran ...
generalized T-duality from circles to arbitrary manifolds, creating the mathematical field of
mirror symmetry In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2D ther ...
. Daniel Friedan, Emil Martinec and
Stephen Shenker Stephen Hart Shenker (born 1953) is an American theoretical physicist who works on string theory. He is a professor at Stanford University and former director of the Stanford Institute for Theoretical Physics. His brother Scott Shenker is a comp ...
further developed the covariant quantization of the superstring using conformal field theory techniques.
David Gross David Jonathan Gross (; born February 19, 1941) is an American theoretical physicist and string theorist. Along with Frank Wilczek and David Politzer, he was awarded the 2004 Nobel Prize in Physics for their discovery of asymptotic freedom. ...
and Vipul Periwal discovered that string perturbation theory was divergent.
Stephen Shenker Stephen Hart Shenker (born 1953) is an American theoretical physicist who works on string theory. He is a professor at Stanford University and former director of the Stanford Institute for Theoretical Physics. His brother Scott Shenker is a comp ...
showed it diverged much faster than in field theory suggesting that new non-perturbative objects were missing. In the 1990s,
Joseph Polchinski Joseph Gerard Polchinski Jr. (; May 16, 1954 – February 2, 2018) was an American theoretical physicist and string theorist. Biography Polchinski was born in White Plains, New York, the elder of two children to Joseph Gerard Polchinski Sr. (1929 ...
discovered that the theory requires higher-dimensional objects, called
D-brane In string theory, D-branes, short for ''Dirichlet membrane'', are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes were discovered by Jin Dai, Leigh, and Polch ...
s and identified these with the black-hole solutions of supergravity. These were understood to be the new objects suggested by the perturbative divergences, and they opened up a new field with rich mathematical structure. It quickly became clear that D-branes and other p-branes, not just strings, formed the matter content of the string theories, and the physical interpretation of the strings and branes was revealed—they are a type of black hole.
Leonard Susskind Leonard Susskind (; born June 16, 1940)his 60th birthday was celebrated with a special symposium at Stanford University.in Geoffrey West's introduction, he gives Suskind's current age as 74 and says his birthday was recent. is an American physicis ...
had incorporated the
holographic principle The holographic principle is an axiom in string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a ...
of
Gerardus 't Hooft Gerardus (Gerard) 't Hooft (; born July 5, 1946) is a Dutch theoretical physicist and professor at Utrecht University, the Netherlands. He shared the 1999 Nobel Prize in Physics with his thesis advisor Martinus J. G. Veltman "for elucidating th ...
into string theory, identifying the long highly excited string states with ordinary thermal black hole states. As suggested by 't Hooft, the fluctuations of the black hole horizon, the world-sheet or world-volume theory, describes not only the degrees of freedom of the black hole, but all nearby objects too.


Second superstring revolution

In 1995, at the annual conference of string theorists at the University of Southern California (USC),
Edward Witten Edward Witten (born August 26, 1951) is an American mathematical and theoretical physicist. He is a Professor Emeritus in the School of Natural Sciences at the Institute for Advanced Study in Princeton. Witten is a researcher in string theory, q ...
gave a speech on string theory that in essence united the five string theories that existed at the time, and giving birth to a new 11-dimensional theory called
M-theory M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witt ...
. M-theory was also foreshadowed in the work of
Paul Townsend Paul Kingsley Townsend FRS (; born 3 March 1951) is a British physicist, currently a Professor of Theoretical Physics in Cambridge University's Department of Applied Mathematics and Theoretical Physics. He is notable for his work on string th ...
at approximately the same time. The flurry of activity that began at this time is sometimes called the
second superstring revolution The history of string theory spans several decades of intense research including two superstring revolutions. Through the combined efforts of many researchers, string theory has developed into a broad and varied subject with connections to quantum ...
. During this period, Tom Banks,
Willy Fischler Willy Fischler (born 1949 in Antwerp, Belgium) is a theoretical physicist. He is the Jane and Roland Blumberg Centennial Professor of Physics at the University of Texas at Austin, where he is affiliated with the Weinberg theory group. He is al ...
,
Stephen Shenker Stephen Hart Shenker (born 1953) is an American theoretical physicist who works on string theory. He is a professor at Stanford University and former director of the Stanford Institute for Theoretical Physics. His brother Scott Shenker is a comp ...
and
Leonard Susskind Leonard Susskind (; born June 16, 1940)his 60th birthday was celebrated with a special symposium at Stanford University.in Geoffrey West's introduction, he gives Suskind's current age as 74 and says his birthday was recent. is an American physicis ...
formulated matrix theory, a full holographic description of M-theory using IIA D0 branes. This was the first definition of string theory that was fully non-perturbative and a concrete mathematical realization of the
holographic principle The holographic principle is an axiom in string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a ...
. It is an example of a gauge-gravity duality and is now understood to be a special case of the
AdS/CFT correspondence In theoretical physics, the anti-de Sitter/conformal field theory correspondence, sometimes called Maldacena duality or gauge/gravity duality, is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter ...
.
Andrew Strominger Andrew Eben Strominger (; born 1955) is an American theoretical physicist who is the director of Harvard's Center for the Fundamental Laws of Nature. He has made significant contributions to quantum gravity and string theory. These include his ...
and
Cumrun Vafa Cumrun Vafa ( fa, کامران وفا ; born 1 August 1960) is an Iranian-American theoretical physicist and the Hollis Professor of Mathematics and Natural Philosophy at Harvard University. Early life and education Cumrun Vafa was born in Tehran ...
calculated the entropy of certain configurations of D-branes and found agreement with the semi-classical answer for extreme charged black holes. Petr Hořava and Witten found the eleven-dimensional formulation of the heterotic string theories, showing that orbifolds solve the chirality problem. Witten noted that the effective description of the physics of D-branes at low energies is by a supersymmetric gauge theory, and found geometrical interpretations of mathematical structures in gauge theory that he and Nathan Seiberg had earlier discovered in terms of the location of the branes. In 1997,
Juan Maldacena Juan Martín Maldacena (born September 10, 1968) is an Argentine theoretical physicist and the Carl P. Feinberg Professor in the School of Natural Sciences at the Institute for Advanced Study, Princeton. He has made significant contributions to t ...
noted that the low energy excitations of a theory near a black hole consist of objects close to the horizon, which for extreme charged black holes looks like an
anti-de Sitter space In mathematics and physics, ''n''-dimensional anti-de Sitter space (AdS''n'') is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872 ...
. He noted that in this limit the gauge theory describes the string excitations near the branes. So he hypothesized that string theory on a near-horizon extreme-charged black-hole geometry, an anti-de Sitter space times a sphere with flux, is equally well described by the low-energy limiting
gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations ( Lie grou ...
, the
N = 4 supersymmetric Yang–Mills theory ''N'' = 4 supersymmetric Yang–Mills (SYM) theory is a mathematical and physical model created to study particles through a simple system, similar to string theory, with conformal symmetry. It is a simplified toy theory based on Ya ...
. This hypothesis, which is called the
AdS/CFT correspondence In theoretical physics, the anti-de Sitter/conformal field theory correspondence, sometimes called Maldacena duality or gauge/gravity duality, is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter ...
, was further developed by
Steven Gubser Steven Scott Gubser (May 4, 1972 – August 3, 2019) was a professor of physics at Princeton University. His research focused on theoretical particle physics, especially string theory, and the AdS/CFT correspondence. He was a widely cited sc ...
,
Igor Klebanov Igor R. Klebanov (russian: И́горь Ромáнович Клеба́нов; uk, Ігор Романович Клєбанов; born March 29, 1962) is an American theoretical physicist. Since 1989, he has been a faculty member at Princeton Un ...
and Alexander Polyakov, and by
Edward Witten Edward Witten (born August 26, 1951) is an American mathematical and theoretical physicist. He is a Professor Emeritus in the School of Natural Sciences at the Institute for Advanced Study in Princeton. Witten is a researcher in string theory, q ...
, and it is now well-accepted. It is a concrete realization of the
holographic principle The holographic principle is an axiom in string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a ...
, which has far-reaching implications for
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
s,
locality Locality may refer to: * Locality (association), an association of community regeneration organizations in England * Locality (linguistics) * Locality (settlement) * Suburbs and localities (Australia), in which a locality is a geographic subdivis ...
and
information Information is an abstract concept that refers to that which has the power to inform. At the most fundamental level information pertains to the interpretation of that which may be sensed. Any natural process that is not completely random, ...
in physics, as well as the nature of the gravitational interaction. Through this relationship, string theory has been shown to be related to gauge theories like
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type ...
and this has led to a more quantitative understanding of the behavior of
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ...
s, bringing string theory back to its roots.


Criticism


Number of solutions

To construct models of particle physics based on string theory, physicists typically begin by specifying a shape for the extra dimensions of spacetime. Each of these different shapes corresponds to a different possible universe, or "vacuum state", with a different collection of particles and forces. String theory as it is currently understood has an enormous number of vacuum states, typically estimated to be around , and these might be sufficiently diverse to accommodate almost any phenomenon that might be observed at low energies. Many critics of string theory have expressed concerns about the large number of possible universes described by string theory. In his book ''Not Even Wrong'', Peter Woit, a lecturer in the mathematics department at
Columbia University Columbia University (also known as Columbia, and officially as Columbia University in the City of New York) is a private research university in New York City. Established in 1754 as King's College on the grounds of Trinity Church in Manhatt ...
, has argued that the large number of different physical scenarios renders string theory vacuous as a framework for constructing models of particle physics. According to Woit, Some physicists believe this large number of solutions is actually a virtue because it may allow a natural anthropic explanation of the observed values of
physical constant A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that is generally believed to be both universal in nature and have constant value in time. It is contrasted with a mathematical constant ...
s, in particular the small value of the cosmological constant. The
anthropic principle The anthropic principle, also known as the "observation selection effect", is the hypothesis, first proposed in 1957 by Robert Dicke, that there is a restrictive lower bound on how statistically probable our observations of the universe are, bec ...
is the idea that some of the numbers appearing in the laws of physics are not fixed by any fundamental principle but must be compatible with the evolution of intelligent life. In 1987,
Steven Weinberg Steven Weinberg (; May 3, 1933 – July 23, 2021) was an American theoretical physicist and Nobel laureate in physics for his contributions with Abdus Salam and Sheldon Glashow to the unification of the weak force and electromagnetic interac ...
published an article in which he argued that the cosmological constant could not have been too large, or else
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System ...
and intelligent life would not have been able to develop. Weinberg suggested that there might be a huge number of possible consistent universes, each with a different value of the cosmological constant, and observations indicate a small value of the cosmological constant only because humans happen to live in a universe that has allowed intelligent life, and hence observers, to exist. String theorist Leonard Susskind has argued that string theory provides a natural anthropic explanation of the small value of the cosmological constant. According to Susskind, the different vacuum states of string theory might be realized as different universes within a larger
multiverse The multiverse is a hypothetical group of multiple universes. Together, these universes comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The dif ...
. The fact that the observed universe has a small cosmological constant is just a tautological consequence of the fact that a small value is required for life to exist. Many prominent theorists and critics have disagreed with Susskind's conclusions. According to Woit, "in this case nthropic reasoningis nothing more than an excuse for failure. Speculative scientific ideas fail not just when they make incorrect predictions, but also when they turn out to be vacuous and incapable of predicting anything."


Compatibility with dark energy

It remains unknown whether string theory is compatible with a metastable, positive
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
. Some putative examples of such solutions do exist, such as the model described by Kachru ''et al''. in 2003. In 2018, a group of four physicists advanced a controversial conjecture which would imply that no such universe exists. This is contrary to some popular models of
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univ ...
such as Λ-CDM, which requires a positive vacuum energy. However, string theory is likely compatible with certain types of
quintessence Quintessence, or fifth essence, may refer to: Cosmology * Aether (classical element), in medieval cosmology and science, the fifth element that fills the universe beyond the terrestrial sphere * Quintessence (physics), a hypothetical form of da ...
, where dark energy is caused by a new field with exotic properties.


Background independence

One of the fundamental properties of Einstein's general theory of relativity is that it is background independent, meaning that the formulation of the theory does not in any way privilege a particular spacetime geometry. One of the main criticisms of string theory from early on is that it is not manifestly background-independent. In string theory, one must typically specify a fixed reference geometry for spacetime, and all other possible geometries are described as perturbations of this fixed one. In his book ''
The Trouble With Physics ''The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next'' is a 2006 book by the theoretical physicist Lee Smolin about the problems with string theory. The book strongly criticizes string theory and its ...
'', physicist
Lee Smolin Lee Smolin (; born June 6, 1955) is an American theoretical physicist, a faculty member at the Perimeter Institute for Theoretical Physics, an adjunct professor of physics at the University of Waterloo and a member of the graduate faculty of the ...
of the
Perimeter Institute for Theoretical Physics Perimeter Institute for Theoretical Physics (PI, Perimeter, PITP) is an independent research centre in foundational theoretical physics located in Waterloo, Ontario, Canada. It was founded in 1999. The institute's founding and major benefactor ...
claims that this is the principal weakness of string theory as a theory of quantum gravity, saying that string theory has failed to incorporate this important insight from general relativity. Others have disagreed with Smolin's characterization of string theory. In a review of Smolin's book, string theorist Joseph Polchinski writes Polchinski notes that an important open problem in quantum gravity is to develop holographic descriptions of gravity which do not require the gravitational field to be asymptotically anti-de Sitter. Smolin has responded by saying that the AdS/CFT correspondence, as it is currently understood, may not be strong enough to resolve all concerns about background independence.


Sociology of science

Since the superstring revolutions of the 1980s and 1990s, string theory has been one of dominant paradigms of high energy theoretical physics. Some string theorists have expressed the view that there does not exist an equally successful alternative theory addressing the deep questions of fundamental physics. In an interview from 1987,
Nobel laureate The Nobel Prizes ( sv, Nobelpriset, no, Nobelprisen) are awarded annually by the Royal Swedish Academy of Sciences, the Swedish Academy, the Karolinska Institutet, and the Norwegian Nobel Committee to individuals and organizations who make o ...
David Gross David Jonathan Gross (; born February 19, 1941) is an American theoretical physicist and string theorist. Along with Frank Wilczek and David Politzer, he was awarded the 2004 Nobel Prize in Physics for their discovery of asymptotic freedom. ...
made the following controversial comments about the reasons for the popularity of string theory: Several other high-profile theorists and commentators have expressed similar views, suggesting that there are no viable alternatives to string theory. Many critics of string theory have commented on this state of affairs. In his book criticizing string theory, Peter Woit views the status of string theory research as unhealthy and detrimental to the future of fundamental physics. He argues that the extreme popularity of string theory among theoretical physicists is partly a consequence of the financial structure of academia and the fierce competition for scarce resources. In his book ''
The Road to Reality ''The Road to Reality: A Complete Guide to the Laws of the Universe'' is a book on modern physics by the British mathematical physicist Roger Penrose, published in 2004. It covers the basics of the Standard Model of particle physics, discussing ...
'', mathematical physicist
Roger Penrose Sir Roger Penrose (born 8 August 1931) is an English mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus f ...
expresses similar views, stating "The often frantic competitiveness that this ease of communication engenders leads to
bandwagon effect The bandwagon effect is the tendency for people to adopt certain behaviors, styles, or attitudes simply because others are doing so. More specifically, it is a cognitive bias by which public opinion or behaviours can alter due to particular act ...
s, where researchers fear to be left behind if they do not join in." Penrose also claims that the technical difficulty of modern physics forces young scientists to rely on the preferences of established researchers, rather than forging new paths of their own. Lee Smolin expresses a slightly different position in his critique, claiming that string theory grew out of a tradition of particle physics which discourages speculation about the foundations of physics, while his preferred approach,
loop quantum gravity Loop quantum gravity (LQG) is a theory of quantum gravity, which aims to merge quantum mechanics and general relativity, incorporating matter of the Standard Model into the framework established for the pure quantum gravity case. It is an attem ...
, encourages more radical thinking. According to Smolin, Smolin goes on to offer a number of prescriptions for how scientists might encourage a greater diversity of approaches to quantum gravity research. Smolin, Ch. 20


Notes


References


Bibliography

* * * * * * * * * * *


Further reading


Popular science

* * * * *


Textbooks

* * * * * * * * * * *


External links

Websites
Not Even Wrong
A blog critical of string theory
The Official String Theory Web SiteWhy String Theory
An introduction to string theory. Video
bbc-horizon: parallel-uni
— 2002 feature documentary by
BBC Horizon ''Horizon'' is an ongoing and long-running British documentary television series on BBC Two that covers science and philosophy. History The programme was first broadcast on 2 May 1964 with "The World of Buckminster Fuller" which explored the th ...
, episode Parallel Universes focus on history and emergence of M-theory, and scientists involved.
pbs.org-nova: elegant-uni
— 2003
Emmy Award The Emmy Awards, or Emmys, are an extensive range of awards for artistic and technical merit for the American and international television industry. A number of annual Emmy Award ceremonies are held throughout the calendar year, each with the ...
-winning, three-hour miniseries by
Nova A nova (plural novae or novas) is a transient astronomical event that causes the sudden appearance of a bright, apparently "new" star (hence the name "nova", which is Latin for "new") that slowly fades over weeks or months. Causes of the dramat ...
with
Brian Greene Brian Randolph Greene (born February 9, 1963) is a American theoretical physicist, mathematician, and string theorist. Greene was a physics professor at Cornell University from 19901995, and has been a professor at Columbia University sinc ...
, adapted from his
The Elegant Universe ''The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory'' is a book by Brian Greene published in 1999, which introduces string and superstring theory, and provides a comprehensive though non-technical assess ...
(original PBS broadcast dates: October 28, 8–10 p.m. and November 4, 8–9 p.m., 2003). {{Authority control Mathematical physics Concepts in physics Dimension Multi-dimensional geometry Physical cosmology Physics beyond the Standard Model Theoretical physics