Galvanometer
   HOME

TheInfoList



OR:

A galvanometer is an electromechanical
measuring instrument A measuring instrument is a device to measure a physical quantity. In the physical sciences, quality assurance, and engineering, measurement is the activity of obtaining and comparing physical quantities of real-world objects and events. Est ...
for
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The movi ...
. Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely. A galvanometer works by deflecting a pointer in response to an electric current flowing through a coil in a constant
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
. Galvanometers can be thought of as a kind of
actuator An actuator is a component of a machine that is responsible for moving and controlling a mechanism or system, for example by opening a valve. In simple terms, it is a "mover". An actuator requires a control device (controlled by control signal) a ...
. Galvanometers came from the observation, first noted by
Hans Christian Ørsted Hans Christian Ørsted ( , ; often rendered Oersted in English; 14 August 17779 March 1851) was a Danish physicist and chemist who discovered that electric currents create magnetic fields, which was the first connection found between electricit ...
in 1820, that a magnetic compass's needle deflects when near a wire having electric current. They were the first instruments used to detect and measure small amounts of current.
André-Marie Ampère André-Marie Ampère (, ; ; 20 January 177510 June 1836) was a French physicist and mathematician who was one of the founders of the science of classical electromagnetism, which he referred to as "electrodynamics". He is also the inventor of nu ...
, who gave mathematical expression to Ørsted's discovery, named the instrument after the Italian electricity researcher
Luigi Galvani Luigi Galvani (, also ; ; la, Aloysius Galvanus; 9 September 1737 – 4 December 1798) was an Italian physician, physicist, biologist and philosopher, who studied animal electricity. In 1780, he discovered that the muscles of dead frogs' legs ...
, who in 1791 discovered the principle of the
frog galvanoscope The frog galvanoscope was a sensitive electrical instrument used to detect voltage in the late eighteenth and nineteenth centuries. It consists of skinned frog's leg with electrical connections to a nerve. The instrument was invented by Luigi Ga ...
– that electric current would make the legs of a dead frog jerk. Galvanometers have been essential for the development of science and technology in many fields. For example, in the 1800s they enabled long-range communication through submarine cables, such as the earliest
transatlantic telegraph cable Transatlantic telegraph cables were undersea cables running under the Atlantic Ocean for telegraph communications. Telegraphy is now an obsolete form of communication, and the cables have long since been decommissioned, but telephone and data a ...
s, and were essential to discovering the electrical activity of the
heart The heart is a muscular Organ (biology), organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as ca ...
and
brain A brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as Visual perception, vision. I ...
, by their fine measurements of current. Galvanometers have also been used as the display components of other kinds of analog meters (e.g., light meters and
VU meter A volume unit (VU) meter or standard volume indicator (SVI) is a device displaying a representation of the signal level in audio equipment. The original design was proposed in the 1940 IRE paper, ''A New Standard Volume Indicator and Reference Lev ...
s), capturing the outputs of these meters'
sensor A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
s. Today, the main type of galvanometer still in use is the D'Arsonval/Weston type.


Operation

Modern galvanometers, of the D'Arsonval/Weston type, are constructed with a small pivoting coil of wire, called a spindle, in the field of a permanent magnet. The coil is attached to a thin pointer that traverses a calibrated scale. A tiny torsion spring pulls the coil and pointer to the zero position. When a
direct current Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or ev ...
(DC) flows through the coil, the coil generates a magnetic field. This field acts against the permanent magnet. The coil twists, pushing against the spring, and moves the pointer. The hand points at a scale indicating the electric current. Careful design of the pole pieces ensures that the magnetic field is uniform so that the angular deflection of the pointer is proportional to the current. A useful meter generally contains a provision for damping the mechanical resonance of the moving coil and pointer, so that the pointer settles quickly to its position without
oscillation Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendul ...
. The basic sensitivity of a meter might be, for instance, 100 microamperes full scale (with a voltage drop of, say, 50 millivolts at full current). Such meters are often calibrated to read some other quantity that can be converted to a current of that magnitude. The use of current dividers, often called shunts, allows a meter to be calibrated to measure larger currents. A meter can be calibrated as a DC voltmeter if the resistance of the coil is known by calculating the voltage required to generate a full-scale current. A meter can be configured to read other voltages by putting it in a voltage divider circuit. This is generally done by placing a
resistor A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active e ...
in series with the meter coil. A meter can be used to read resistance by placing it in series with a known voltage (a battery) and an adjustable resistor. In a preparatory step, the circuit is completed and the resistor adjusted to produce full-scale deflection. When an unknown resistor is placed in series in the circuit the current will be less than full scale and an appropriately calibrated scale can display the value of the previously unknown resistor. These capabilities to translate different kinds of electric quantities into pointer movements make the galvanometer ideal for turning the output of other sensors that output electricity (in some form or another), into something that can be read by a human. Because the pointer of the meter is usually a small distance above the scale of the meter,
parallax Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby object ...
error can occur when the operator attempts to read the scale line that "lines up" with the pointer. To counter this, some meters include a mirror along with the markings of the principal scale. The accuracy of the reading from a mirrored scale is improved by positioning one's head while reading the scale so that the pointer and the reflection of the pointer are aligned; at this point, the operator's eye must be directly above the pointer and any parallax error has been minimized.


Uses

Probably the largest use of galvanometers was of the D'Arsonval/Weston type used in analog meters in electronic equipment. Since the 1980s, galvanometer-type analog meter movements have been displaced by analog-to-digital converters (ADCs) for many uses. A digital panel meter (DPM) contains an ADC and numeric display. The advantages of a digital instrument are higher precision and accuracy, but factors such as power consumption or cost may still favor the application of analog meter movements.


Modern uses

Most modern uses for the galvanometer mechanism are in positioning and control systems. Galvanometer mechanisms are divided into moving magnet and moving coil galvanometers; in addition, they are divided into ''closed-loop'' and ''open-loop'' - or ''resonant'' - types. ''Mirror'' galvanometer systems are used as beam positioning or beam steering elements in laser scanning systems. For example, for material processing with high-power lasers, closed loop mirror galvanometer mechanisms are used with servo control systems. These are typically high power galvanometers and the newest galvanometers designed for beam steering applications can have frequency responses over 10 kHz with appropriate servo technology. Closed-loop mirror galvanometers are also used in similar ways in stereolithography, laser sintering,
laser engraving Laser engraving is the practice of using lasers to engrave an object. Laser marking, on the other hand, is a broader category of methods to leave marks on an object, which in some cases, also includes color change due to chemical/molecular alt ...
, laser beam welding, laser TVs,
laser display A laser lighting display or laser light show involves the use of laser light to entertain an audience. A laser light show may consist only of projected laser beams set to music, or may accompany another form of entertainment, typically mus ...
s and in imaging applications such as retinal scanning with
Optical Coherence Tomography Optical coherence tomography (OCT) is an imaging technique that uses low-coherence light to capture micrometer-resolution, two- and three-dimensional images from within optical scattering media (e.g., biological tissue). It is used for medica ...
(OCT) and Scanning Laser Ophthalmoscopy (SLO). Almost all of these galvanometers are of the moving magnet type. The closed loop is obtained measuring the position of the rotating axis with an infrared emitter and 2 photodiodes. This feedback is an analog signal. Open loop, or resonant mirror galvanometers, are mainly used in some types of laser-based bar-code scanners, printing machines, imaging applications, military applications and space systems. Their non-lubricated bearings are especially of interest in applications that require functioning in a high
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often ...
. Moving coil type galvanometer mechanisms (called 'voice coils' by hard disk manufacturers) are used for controlling the ''head positioning'' servos in
hard disk drive A hard disk drive (HDD), hard disk, hard drive, or fixed disk is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with mag ...
s and CD/DVD players, in order to keep mass (and thus access times), as low as possible.


Past uses

A major early use for galvanometers was for finding faults in telecommunications cables. They were superseded in this application late in the 20th century by time-domain reflectometers. Galvanometer mechanisms were also used to get readings from photoresistors in the metering mechanisms of film cameras (as seen in the adjacent image). In analog strip chart recorders such as used in electrocardiographs,
electroencephalograph Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocortex ...
s and polygraphs, galvanometer mechanisms were used to position the ''pen''. Strip chart recorders with galvanometer driven pens may have a full-scale frequency response of 100 Hz and several centimeters of deflection.


History


Hans Christian Ørsted

The deflection of a magnetic compass needle by the current in a wire was first described by
Hans Christian Ørsted Hans Christian Ørsted ( , ; often rendered Oersted in English; 14 August 17779 March 1851) was a Danish physicist and chemist who discovered that electric currents create magnetic fields, which was the first connection found between electricit ...
in 1820. The phenomenon was studied both for its own sake and as a means of measuring electric current.


Schweigger and Ampère

The earliest galvanometer was reported by
Johann Schweigger Johann Salomo Christoph Schweigger (8 April 1779 – 6 September 1857) was a German chemist, physicist, and professor of mathematics born in Erlangen. J.S.C.Schweigger was the son of Friedrich Christian Lorenz Schweigger, professor of theologie ...
at the University of Halle on 16 September 1820.
André-Marie Ampère André-Marie Ampère (, ; ; 20 January 177510 June 1836) was a French physicist and mathematician who was one of the founders of the science of classical electromagnetism, which he referred to as "electrodynamics". He is also the inventor of nu ...
also contributed to its development. Early designs increased the effect of the magnetic field generated by the current by using multiple turns of wire. The instruments were at first called "multipliers" due to this common design feature. The term "galvanometer," in common use by 1836, was derived from the surname of Italian electricity researcher
Luigi Galvani Luigi Galvani (, also ; ; la, Aloysius Galvanus; 9 September 1737 – 4 December 1798) was an Italian physician, physicist, biologist and philosopher, who studied animal electricity. In 1780, he discovered that the muscles of dead frogs' legs ...
, who in 1791 discovered that electric current would make a dead frog's leg jerk.


Poggendorff and Thomson

Originally, the instruments relied on the Earth's magnetic field to provide the restoring force for the compass needle. These were called "tangent" galvanometers and had to be oriented before use. Later instruments of the " astatic" type used opposing magnets to become independent of the Earth's field and would operate in any orientation. An early mirror galvanometer was invented in 1826 by
Johann Christian Poggendorff Johann Christian Poggendorff (29 December 1796 – 24 January 1877), was a German physicist born in Hamburg. By far the greater and more important part of his work related to electricity and magnetism. Poggendorff is known for his electrostatic ...
. An astatic galvanometer was invented by
Hermann von Helmholtz Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 – 8 September 1894) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The Helmholtz Associat ...
in 1849; a more sensitive version of that device, the Thomson ''mirror galvanometer'', was patented in 1858 by William Thomson (Lord Kelvin). Thomson's design was able to detect very rapid current changes by using small magnets attached to a lightweight mirror, suspended by a thread, instead of a compass needle. The deflection of a light beam on the mirror greatly magnified the deflection induced by small currents. Alternatively, the deflection of the suspended magnets could be observed directly through a microscope.


Georg Ohm

The ability to measure quantitatively voltage and current allowed Georg Ohm, in 1827, to formulate
Ohm's Law Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the usual mathematical equa ...
– that the voltage across a conductor is directly proportional to the current through it.


D'Arsonval and Deprez

The early moving-magnet form of galvanometer had the disadvantage that it was affected by any magnets or iron masses near it, and its deflection was not linearly proportional to the current. In 1882
Jacques-Arsène d'Arsonval Jacques-Arsène d'Arsonval (8 June 1851 – 31 December 1940) was a French physician, physicist and inventor of the moving-coil D'Arsonval galvanometer and the thermocouple ammeter. D'Arsonval was an important contributor to the emerging field of ...
and Marcel Deprez developed a form with a stationary permanent magnet and a moving coil of wire, suspended by fine wires which provided both an electrical connection to the coil and the restoring torque to return to the zero position. An iron tube between the magnet's pole pieces defined a circular gap through which the coil rotated. This gap produced a consistent, radial magnetic field across the coil, giving a linear response throughout the instrument's range. A mirror attached to the coil deflected a beam of light to indicate the coil position. The concentrated magnetic field and delicate suspension made these instruments sensitive; d'Arsonval's initial instrument could detect ten microamperes.


Edward Weston

Edward Weston Edward Henry Weston (March 24, 1886 – January 1, 1958) was a 20th-century American photographer. He has been called "one of the most innovative and influential American photographers..." and "one of the masters of 20th century photography." ...
extensively improved the design of the galvanometer. He substituted the fine wire suspension with a pivot and provided restoring torque and electrical connections through spiral springs rather than through the traditional wristwatch balance wheel hairspring. He developed a method of stabilizing the magnetic field of the permanent magnet, so the instrument would have consistent accuracy over time. He replaced the light beam and mirror with a knife-edge pointer that could be read directly. A mirror under the pointer, in the same plane as the scale, eliminated
parallax Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby object ...
observation error. To maintain the field strength, Weston's design used a very narrow circumferential slot through which the coil moved, with a minimal air-gap. This improved linearity of pointer deflection with respect to coil current. Finally, the coil was wound on a light-weight form made of conductive metal, which acted as a damper. By 1888, Edward Weston had patented and brought out a commercial form of this instrument, which became a standard electrical equipment component. It was known as a "portable" instrument because it was affected very little by mounting position or by transporting it from place to place. This design is almost universally used in moving-coil meters today. Initially, laboratory instruments relying on the Earth's own magnetic field to provide restoring force for the pointer, galvanometers were developed into compact, rugged, sensitive portable instruments essential to the development of electro-technology.


Taut-band movement

The taut-band movement is a modern development of the D'Arsonval-Weston movement. The jewel pivots and hairsprings are replaced by tiny strips of metal under tension. Such a meter is more rugged for field use.


Types

There is broadly two types of galvanometers. Some galvanometers use a solid pointer on a scale to show measurements; other very sensitive types use a miniature mirror and a beam of light to provide mechanical amplification of low-level signals.


Tangent galvanometer

A tangent galvanometer is an early
measuring instrument A measuring instrument is a device to measure a physical quantity. In the physical sciences, quality assurance, and engineering, measurement is the activity of obtaining and comparing physical quantities of real-world objects and events. Est ...
used for the measurement of
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The movi ...
. It works by using a
compass A compass is a device that shows the cardinal directions used for navigation and geographic orientation. It commonly consists of a magnetized needle or other element, such as a compass card or compass rose, which can pivot to align itself with ...
needle to compare a
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
generated by the unknown current to the magnetic field of the Earth. It gets its name from its operating principle, the tangent law of magnetism, which states that the
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. Mo ...
of the angle a compass needle makes is proportional to the ratio of the strengths of the two perpendicular magnetic fields. It was first described by Johan Jakob Nervander in 1834. A tangent galvanometer consists of a coil of insulated copper wire wound on a circular non-magnetic frame. The frame is mounted vertically on a horizontal base provided with levelling screws. The coil can be rotated on a vertical axis passing through its centre. A compass box is mounted horizontally at the centre of a circular scale. It consists of a tiny, powerful magnetic needle pivoted at the centre of the coil. The magnetic needle is free to rotate in the horizontal plane. The circular scale is divided into four quadrants. Each quadrant is graduated from 0° to 90°. A long thin aluminium pointer is attached to the needle at its centre and at right angle to it. To avoid errors due to parallax, a plane mirror is mounted below the compass needle. In operation, the instrument is first rotated until the magnetic field of the Earth, indicated by the compass needle, is parallel with the plane of the coil. Then the unknown current is applied to the coil. This creates a second magnetic field on the axis of the coil, perpendicular to the Earth's magnetic field. The compass needle responds to the vector sum of the two fields and deflects to an angle equal to the tangent of the ratio of the two fields. From the angle read from the compass's scale, the current could be found from a table. The current supply wires have to be wound in a small helix, like a pig's tail, otherwise the field due to the wire will affect the compass needle and an incorrect reading will be obtained. File:Sine and Tangent Galvanometer-MHS 98-IMG 3874-gradient.jpg, An 1850 Pouillet Tangent Galvanometer on display at
Musée d'histoire des sciences de la Ville de Genève The ''Musée d'histoire des sciences de la Ville de Genève'' (Museum of the History of Science of the City of Geneva) is a small museum in Switzerland dedicated to the history of science. Location The museum is located in the ''Villa Bartholon ...
File:Western Union standard galvanometer.jpg, alt=Drawing. The prominent feature is a vertical ring seen from the front. It is mounted on a horizontal disk that has electrical connectors. A horizontal compass is mounted at the center of the ring., Tangent galvanometer made by J. H. Bunnell Co. around 1890. File:Tangent galvanometer Philip-Harris top1.jpg, alt=Photograph. The most prominent feature is a horizontal circular compass case that is seen from above. The compass is centered inside of a black ring with a square cross-section. The compass and ring are supported on a brass tripod that has leveling screws as its feet., Top view of a tangent galvanometer made about 1950. The indicator needle of the compass is perpendicular to the shorter, black magnetic needle.


Theory

The galvanometer is oriented so that the plane of the coil is vertical and aligned along parallel to the horizontal component of the Earth's magnetic field (i.e. parallel to the local "magnetic meridian"). When an electric current flows through the galvanometer coil, a second magnetic field is created. At the center of the coil, where the compass needle is located, the coil's field is perpendicular to the plane of the coil. The magnitude of the coil's field is: :B=\, where is the current in
ampere The ampere (, ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to elect ...
s, is the number of turns of the coil and is the radius of the coil. These two perpendicular magnetic fields add vectorially, and the compass needle points along the direction of their resultant . The current in the coil causes the compass needle to rotate by an angle : :\theta = \tan^ \frac\, From tangent law, , i.e. : = B_H \tan\theta\, or :I=\left(\frac\right)\tan\theta\, or , where is called the Reduction Factor of the tangent galvanometer. One problem with the tangent galvanometer is that its resolution degrades at both high currents and low currents. The maximum resolution is obtained when the value of is 45°. When the value of is close to 0° or 90°, a large percentage change in the current will only move the needle a few degrees.


Geomagnetic field measurement

A tangent galvanometer can also be used to measure the magnitude of the horizontal component of the
geomagnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magneti ...
. When used in this way, a low-voltage power source, such as a battery, is connected in series with a rheostat, the galvanometer, and an ammeter. The galvanometer is first aligned so that the coil is parallel to the geomagnetic field, whose direction is indicated by the compass when there is no current through the coils. The battery is then connected and the rheostat is adjusted until the compass needle deflects 45 degrees from the geomagnetic field, indicating that the magnitude of the magnetic field at the center of the coil is the same as that of the horizontal component of the geomagnetic field. This field strength can be calculated from the current as measured by the ammeter, the number of turns of the coil, and the radius of the coils.


Astatic galvanometer

Unlike the tangent galvanometer, the ''astatic galvanometer'' does not use the Earth's magnetic field for measurement, so it does not need to be oriented with respect to the Earth's field, making it easier to use. Developed by Leopoldo Nobili in 1825, it consists of two magnetized needles parallel to each other but with the magnetic poles reversed. These needles are suspended by a single silk thread. The lower needle is inside a vertical current sensing coil of wire and is deflected by the magnetic field created by the passing current, as in the tangent galvanometer above. The purpose of the second needle is to cancel the dipole moment of the first needle, so the suspended armature has no net
magnetic dipole moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagnet ...
, and thus is not affected by the earth's magnetic field. The needle's rotation is opposed by the torsional elasticity of the suspension thread, which is proportional to the angle. File:Galvanometer-MHS 229-IMG 3875-gradient.jpg, Galvanometer on display at
Musée d'histoire des sciences de la Ville de Genève The ''Musée d'histoire des sciences de la Ville de Genève'' (Museum of the History of Science of the City of Geneva) is a small museum in Switzerland dedicated to the history of science. Location The museum is located in the ''Villa Bartholon ...
File:Astatic Galvanometer brass and ivory.jpg, Detail of an astatic galvanometer.


Mirror galvanometer

To achieve higher sensitivity to detect extremely small currents, the mirror galvanometer substitutes a lightweight mirror for the pointer. It consists of horizontal magnets suspended from a fine fiber, inside a vertical coil of wire, with a mirror attached to the magnets. A beam of light reflected from the mirror falls on a graduated scale across the room, acting as a long mass-less pointer. The mirror galvanometer was used as the receiver in the first trans-Atlantic submarine telegraph cables in the 1850s, to detect the extremely faint pulses of current after their thousand-mile journey under the Atlantic. In a device called an oscillograph, the moving beam of light is used, to produce graphs of current versus time, by recording measurements on photographic film. The string galvanometer is a type of mirror galvanometer so sensitive that it was used to make the first electrocardiogram of the electrical activity of the human heart.


Ballistic galvanometer

A ballistic galvanometer is a type of sensitive galvanometer for measuring the quantity of charge discharged through it. It is an
integrator An integrator in measurement and control applications is an element whose output signal is the time integral of its input signal. It accumulates the input quantity over a defined time to produce a representative output. Integration is an importan ...
, by virtue of the long time constant of its response, unlike a current-measuring galvanometer. The moving part has a large
moment of inertia The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular accele ...
that gives it an
oscillation Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendul ...
period long enough to make the integrated measurement. It can be either of the moving coil or moving magnet type; commonly it is a mirror galvanometer.


See also

*
Vibration galvanometer A vibration galvanometer is a type of mirror galvanometer, usually with a coil suspended in the gap of a magnet or with a permanent magnet suspended in the field of an electromagnet. The natural oscillation frequency of the moving parts is carefull ...
* Thermo galvanometer * String galvanometer * History of electrochemistry


References


External links


Galvanometer - Interactive Java Tutorial
National High Magnetic Field Laboratory
Selection of historic galvanometer
in the Virtual Laboratory of the Max Planck Institute for the History of Science
The History Corner: The Galvanometer
by Nick Joyce and David Baker, April 1, 2008, Ass. of Physological Science. Retrieved February 26, 2022. {{Authority control Galvanometers Electrical instruments Historical scientific instruments