A premixed flame is a flame formed under certain conditions during the combustion of a premixed charge (also called pre-mixture) of fuel and oxidiser. Since the fuel and oxidiser—the key chemical reactants of combustion—are available throughout a homogeneous stoichiometric premixed charge, the combustion process once initiated sustains itself by way of its own heat release. The majority of the chemical transformation in such a combustion process occurs primarily in a thin interfacial region which separates the unburned and the burned gases. The premixed flame interface propagates through the mixture until the entire charge is depleted.[1] The propagation speed of a premixed flame is known as the flame speed (or burning velocity) which depends on the convection-diffusion-reaction balance within the flame, i.e. on its inner chemical structure. The premixed flame is characterised as laminar or turbulent depending on the velocity distribution in the unburned pre-mixture (which provides the medium of propagation for the flame).

Premixed flame propagation


Under controlled conditions (typically in a laboratory) a laminar flame may be formed in one of several possible flame configurations. The inner structure of a laminar premixed flame is composed of layers over which the decomposition, reaction and complete oxidation of fuel occurs. These chemical processes are much faster than the physical processes such as vortex motion in the flow and, hence, the inner structure of a laminar flame remains intact in most circumstances. The constitutive layers of the inner structure correspond to specified intervals over which the temperature increases from the specified unburned mixture up to as high as the adiabatic flame temperature (AFT). In the presence of volumetric heat transfer and/or aerodynamic stretch, or under the development intrinsic flame instabilities, the extent of reaction and, hence, the temperature attained across the flame may be different from the AFT.

Laminar burning velocity

For a one-step irreversible chemistry, i.e., , the planar, adiabatic flame has explicit expression for the burning velocity derived from activation energy asymptotics when the Zel'dovich number