Fission-fragment rocket
   HOME

TheInfoList



OR:

The fission-fragment rocket is a
rocket engine A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accorda ...
design that directly harnesses hot nuclear fission products for
thrust Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction to be applied to that sys ...
, as opposed to using a separate fluid as
working mass Working mass, also referred to as reaction mass, is a mass against which a system operates in order to produce acceleration. In the case of a chemical rocket, for example, the reaction mass is the product of the burned fuel shot backwards to provi ...
. The design can, in theory, produce very high
specific impulse Specific impulse (usually abbreviated ) is a measure of how efficiently a reaction mass engine (a rocket using propellant or a jet engine using fuel) creates thrust. For engines whose reaction mass is only the fuel they carry, specific impulse is ...
while still being well within the abilities of current technologies.


Design considerations

In traditional
nuclear thermal rocket A nuclear thermal rocket (NTR) is a type of thermal rocket where the heat from a nuclear reaction, often nuclear fission, replaces the chemical energy of the propellants in a chemical rocket. In an NTR, a working fluid, usually liquid hydrog ...
and related designs, the nuclear energy is generated in some form of reactor and used to heat a working fluid to generate thrust. This limits the designs to temperatures that allow the reactor to remain whole, although clever design can increase this critical temperature into the tens of thousands of degrees. A rocket engine's efficiency is strongly related to the temperature of the exhausted working fluid, and in the case of the most advanced gas-core engines, it corresponds to a specific impulse of about 7000 s ''I''sp. The temperature of a conventional reactor design is the average temperature of the fuel, the vast majority of which is not reacting at any given instant. The atoms undergoing fission are at a temperature of millions of degrees, which is then spread out into the surrounding fuel, resulting in an overall temperature of a few thousand. By physically arranging the fuel into very thin layers or particles, the fragments of a nuclear reaction can escape from the surface. Since they will be
ionized Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
due to the high energy of the reaction, they can then be handled
magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nicke ...
ically and channeled to produce thrust. Numerous technological challenges still remain, however.


Research


Rotating fuel reactor

A design by the Idaho National Engineering Laboratory and Lawrence Livermore National Laboratory uses fuel placed on the surface of a number of very thin
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon mak ...
fibres, arranged radially in wheels. The wheels are normally sub-
critical Critical or Critically may refer to: *Critical, or critical but stable, medical states **Critical, or intensive care medicine *Critical juncture, a discontinuous change studied in the social sciences. *Critical Software, a company specializing in ...
. Several such wheels were stacked on a common shaft to produce a single large cylinder. The entire cylinder was rotated so that some fibres were always in a reactor core where surrounding moderator made fibres go critical. The fission fragments at the surface of the fibres would break free and be channeled for thrust. The fibre then rotates out of the reaction zone, to cool, to avoid melting. The efficiency of the system is surprising; specific impulses of greater than 100,000s are possible using existing materials. This is high performance, although the weight of the reactor core and other elements would make the overall performance of the fission-fragment system lower. Nonetheless, the system provides the sort of performance levels that would make an interstellar precursor mission possible.


Dusty plasma

A newer design proposal by Rodney L. Clark and Robert B. Sheldon theoretically increases efficiency and decreases complexity of a fission fragment rocket at the same time over the rotating fibre wheel proposal. In their design,
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 10 ...
s of fissionable fuel (or even fuel that will naturally radioactively decay) are kept in a vacuum chamber subject to an axial magnetic field (acting as a
magnetic mirror A magnetic mirror, known as a magnetic trap (магнитный захват) in Russia and briefly as a pyrotron in the US, is a type of magnetic confinement device used in fusion power to trap high temperature plasma using magnetic fields. T ...
) and an external electric field. As the nanoparticles
ionize Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
as fission occurs, the dust becomes suspended within the chamber. The incredibly high surface area of the particles makes radiative cooling simple. The axial magnetic field is too weak to affect the motions of the dust particles but strong enough to channel the fragments into a beam which can be decelerated for power, allowed to be emitted for thrust, or a combination of the two. With exhaust velocities of 3% - 5% the speed of light and efficiencies up to 90%, the rocket should be able to achieve over 1,000,000 sec ''I''sp.


Am 242m as nuclear fuel

In 1987 Ronen & Leibson Ronen, Yigal, and Melvin J. Leibson. "An example for the potential applications of americium-242m as a nuclear fuel." Trans. Israel Nucl. Soc. 14 (1987): V-42. published a study on applications of 242mAm (one of the
isotopes of americium Americium (95Am) is an artificial element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no known stable isotopes. The first isotope to be synthesized was 241Am in 1944. The artificial element decays by ...
) as nuclear fuel to space nuclear reactors, noting its extremely high thermal cross section and energy density. Nuclear systems powered by 242mAm require less fuel by a factor of 2 to 100 compared to conventional
nuclear fuels Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission. Most nuclear fuels contain heavy fissile actinide elements that are capable of undergoing ...
. Fission-fragment rocket using 242mAm was proposed by George Chapline at
LLNL Lawrence Livermore National Laboratory (LLNL) is a federal research facility in Livermore, California, United States. The lab was originally established as the University of California Radiation Laboratory, Livermore Branch in 1952 in response ...
in 1988, who suggested propulsion based on the direct heating of a propellant gas by fission fragments generated by a fissile material. Ronen et al. demonstrate that 242mAm can maintain sustained nuclear fission as an extremely thin metallic film, less than 1/1000 of a millimeter thick. 242mAm requires only 1% of the mass of 235U or 239Pu to reach its critical state. Ronen's group at
Ben-Gurion University of the Negev Ben-Gurion University of the Negev (BGU) ( he, אוניברסיטת בן-גוריון בנגב, ''Universitat Ben-Guriyon baNegev'') is a public research university in Beersheba, Israel. Ben-Gurion University of the Negev has five campuses: the ...
further showed that nuclear fuel based on 242mAm could speed space vehicles from Earth to Mars in as little as two weeks. 242mAm's potential as a nuclear fuel derives from the fact that it has the highest thermal fission cross section (thousands of
barns A barn is an agricultural building usually on farms and used for various purposes. In North America, a barn refers to structures that house livestock, including cattle and horses, as well as equipment and fodder, and often grain.Allen G. ...
), about 10x the next highest cross section across all known isotopes. 242mAm is
fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be t ...
(because it has an odd number of
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s) and has a low
critical mass In nuclear engineering, a critical mass is the smallest amount of fissile material needed for a sustained nuclear chain reaction. The critical mass of a fissionable material depends upon its nuclear properties (specifically, its nuclear fi ...
, comparable to that of 239Pu. It has a very high
cross section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture & engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **Abs ...
for fission, and is destroyed relatively quickly in a nuclear reactor. Another report claims that 242mAm can sustain a chain reaction even as a thin film, and could be used for a novel type of nuclear rocket. Ronen, Yigal, Menashe Aboudy, and Dror Regev. "A Novel Method for Energy Production Using 242 m Am as a Nuclear Fuel." Nuclear technology 129.3 (2000): 407-417. Ronen, Y., E. Fridman, and E. Shwageraus. "The smallest thermal nuclear reactor." Nuclear science and engineering 153.1 (2006): 90-92. Since the thermal
absorption cross section Absorption cross section is a measure for the probability of an absorption process. More generally, the term cross section is used in physics to quantify the probability of a certain particle-particle interaction, e.g., scattering, electromagne ...
of 242mAm is very high, the best way to obtain 242mAm is by the capture of fast or
epithermal Hydrothermal circulation in its most general sense is the circulation of hot water (Ancient Greek ὕδωρ, ''water'',Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon. revised and augmented throughout by Sir Henry Stuart Jones. with th ...
neutrons in
Americium-241 Americium-241 (, Am-241) is an isotope of americium. Like all isotopes of americium, it is radioactive, with a half-life of . is the most common isotope of americium as well as the most prevalent isotope of americium in nuclear waste. It is com ...
irradiated in
fast reactor A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV or greater, on average), as oppose ...
. However, fast spectrum reactors are not readily available. Detailed analysis of 242mAm production in existing PWRs was provided in. Proliferation resistance of 242mAm was reported by Karlsruhe Institute of Technology 2008 study. In 2000
Carlo Rubbia Carlo Rubbia (born 31 March 1934) is an Italian particle physicist and inventor who shared the Nobel Prize in Physics in 1984 with Simon van der Meer for work leading to the discovery of the W and Z particles at CERN. Early life and educa ...
at CERN further extended the work by Ronen and Chapline on fission-fragment rocket using 242mAm as a fuel.Rubbia, Carlo. Fission fragments heating for space propulsion. No. SL-Note-2000-036-EET. CERN-SL-Note-2000-036-EET, 2000. Project 242 based on Rubbia design studied a concept of 242mAm based Thin-Film Fission Fragment Heated NTR by using direct conversion of the kinetic energy of fission fragments into increasing of enthalpy of a propellant gas. Project 242 studied the application of this propulsion system to a crewed mission to Mars. Preliminary results were very satisfactory and it has been observed that a propulsion system with these characteristics could make the mission feasible. Another study focused on production of 242mAm in conventional thermal nuclear reactors. Benetti, P., et al. "Production of 242mAm." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 564.1 (2006): 482-485.


See also

*
Fission fragment reactor Similar to how the fission-fragment rocket produces thrust, a fission fragment reactor is a nuclear reactor that generates electricity by decelerating an ion beam of fission byproducts instead of using nuclear reactions to generate heat. By doin ...
* Pulsed nuclear thermal rocket *
Nuclear salt-water rocket A nuclear salt-water rocket (NSWR) is a theoretical type of nuclear thermal rocket which was designed by Robert Zubrin. In place of traditional chemical propellant, such as that in a chemical rocket, the rocket would be fueled by salts of plut ...


References

{{Nuclear propulsion Americium Nuclear spacecraft propulsion