Fin and flipper locomotion
   HOME

TheInfoList



OR:

Fin and flipper locomotion occurs mostly in
aquatic locomotion Aquatic locomotion or swimming is biologically propelled motion through a liquid medium. The simplest propulsive systems are composed of cilia and flagella. Swimming has evolved a number of times in a range of organisms including arthropods, ...
, and rarely in
terrestrial locomotion Terrestrial locomotion has evolved as animals adapted from aquatic to terrestrial environments. Locomotion on land raises different problems than that in water, with reduced friction being replaced by the increased effects of gravity. As viewe ...
. From the three common states of matter — gas, liquid and solid, these appendages are adapted for liquids, mostly fresh or saltwater and used in locomotion, steering and balancing of the body.
Locomotion Locomotion means the act or ability of something to transport or move itself from place to place. Locomotion may refer to: Motion * Motion (physics) * Robot locomotion, of man-made devices By environment * Aquatic locomotion * Flight * Locomo ...
is important in order to escape predators, acquire food, find mates and bury for shelter, nest or food. Aquatic locomotion consists of swimming, whereas terrestrial locomotion encompasses walking, 'crutching', jumping, digging as well as covering. Some animals such as
sea turtles Sea turtles (superfamily Chelonioidea), sometimes called marine turtles, are reptiles of the order Testudines and of the suborder Cryptodira. The seven existing species of sea turtles are the flatback, green, hawksbill, leatherback, loggerhe ...
and
mudskipper Mudskippers are any of the 23 extant species of amphibious fish from the subfamily Oxudercinae of the goby family Oxudercidae. They are known for their unusual body shapes, preferences for semiaquatic habitats, limited terrestrial locomotion ...
s use these two environments for different purposes, for example using the land for nesting, and the sea to hunt for food.


Aquatic locomotion with fins and flippers


Aquatic locomotion of fish

Fish Fish are Aquatic animal, aquatic, craniate, gill-bearing animals that lack Limb (anatomy), limbs with Digit (anatomy), digits. Included in this definition are the living hagfish, lampreys, and Chondrichthyes, cartilaginous and bony fish as we ...
live in fresh or saltwater habitats and some exceptions are capable of coming on land ( mudskippers). Most fish have muscles called
myomere Myomeres are blocks of skeletal muscle tissue arranged in sequence, commonly found in aquatic chordates. Myomeres are separated from adjacent myomeres by connective fascia (myosepta) and most easily seen in larval fishes or in the olm. Myomere c ...
s, along each side of the body. To swim, they alternately contract one side and relax the other side in a progression which goes from the head to the tail. In this way, an
undulatory locomotion Undulatory locomotion is the type of motion characterized by wave-like movement patterns that act to propel an animal forward. Examples of this type of gait include crawling in snakes, or swimming in the lamprey. Although this is typically the ...
results, first bending the body one way in a wave which travels down the body, and then back the other way, with the contracting and relaxing muscles switching roles. They use their fins to propel themselves through the water in this swimming motion.
Actinopterygians Actinopterygii (; ), members of which are known as ray-finned fishes, is a class of bony fish. They comprise over 50% of living vertebrate species. The ray-finned fishes are so called because their fins are webs of skin supported by bony or hor ...
, the
ray-finned fish Actinopterygii (; ), members of which are known as ray-finned fishes, is a class of bony fish. They comprise over 50% of living vertebrate species. The ray-finned fishes are so called because their fins are webs of skin supported by bony or h ...
show an evolutionary pattern of fine control ability to control the dorsal and ventral lobe of the
caudal fin Fins are distinctive anatomical features composed of bony spines or rays protruding from the body of a fish. They are covered with skin and joined together either in a webbed fashion, as seen in most bony fish, or similar to a flipper, as se ...
. Through developmental changes, intrinsic caudal muscles were added, which enable fish to exhibit such complex maneuvers such as control during acceleration, braking and backing. Studies have shown that the muscles in the caudal fin, have independent activity patterns from the myotomal musculature. These results show specific
kinematic Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. Kinematics, as a fie ...
roles for different part of the fish's musculature. A curious example of fish adaption is the
ocean sunfish The ocean sunfish or common mola (''Mola mola'') is one of the largest bony fish in the world. It was misidentified as the heaviest bony fish, which was actually a different species, '' Mola alexandrini''. Adults typically weigh between . The sp ...
, also known as the ''Mola mola''. These fish have undergone significant developmental changes reducing their spinal cord, giving them a disk like appearance, and investing in two very large fins for propulsion. This adaptation usually gives them the appearance that they are as long as they are tall. They are also amazing fish in that they hold the world record in weight gain from fry to adult (60 million times its weight).


Aquatic locomotion of marine mammals

Swimming mammals, such as
whales Whales are a widely distributed and diverse group of fully aquatic placental marine mammals. As an informal and colloquial grouping, they correspond to large members of the infraorder Cetacea, i.e. all cetaceans apart from dolphins and ...
,
dolphins A dolphin is an aquatic mammal within the infraorder Cetacea. Dolphin species belong to the families Delphinidae (the oceanic dolphins), Platanistidae (the Indian river dolphins), Iniidae (the New World river dolphins), Pontoporiidae (t ...
, and
seals Seals may refer to: * Pinniped, a diverse group of semi-aquatic marine mammals, many of which are commonly called seals, particularly: ** Earless seal, or "true seal" ** Fur seal * Seal (emblem), a device to impress an emblem, used as a means of a ...
, use their flippers to move forward through the water column. During swimming sea lions have a thrust phase, which lasts about 60% of the full cycle, and the recovery phase lasts the remaining 40%. A full cycle duration lasts about 0.5 to 1.0 seconds. Changing direction is a very rapid maneuver that is initiated by head movement towards the back of the animal that is followed by a spiral turn with the body. Due to their pectoral flippers being so closely located to their
center of gravity In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force ma ...
, sea lions are capable of displaying astounding maneuverability in the pitch, roll, and yaw direction and are therefore not constrained, turning stochastically as they please. It is hypothesized that the increased level of maneuverability is caused by their complex habitat. Hunting occurs in difficult environments containing rocky inshore/
kelp forest Kelp forests are underwater areas with a high density of kelp, which covers a large part of the world's coastlines. Smaller areas of anchored kelp are called kelp beds. They are recognized as one of the most productive and dynamic ecosystems on Ea ...
communities, with many niches for prey to hide, therefore requiring speed and maneuverability for capture. The complex skills of a sea lion are learned early on in
ontogeny Ontogeny (also ontogenesis) is the origination and development of an organism (both physical and psychological, e.g., moral development), usually from the time of fertilization of the egg to adult. The term can also be used to refer to the s ...
and most are perfected by the time the pups reach one year. Whales and dolphins are less maneuverable and more constrained in their movements. However, dolphins are capable of accelerating as fast as sea lions, but they are not capable of turning as quickly and as efficiently. For both whales and dolphins, their center of gravity does not line up with their pectoral flippers in a straight line, causing a much more rigid and stable swimming pattern.


Aquatic locomotion of marine reptiles

Aquatic reptiles such as
sea turtles Sea turtles (superfamily Chelonioidea), sometimes called marine turtles, are reptiles of the order Testudines and of the suborder Cryptodira. The seven existing species of sea turtles are the flatback, green, hawksbill, leatherback, loggerhe ...
predominantly use their pectoral flippers to propulse through the water and their pelvic flippers for maneuvering. During swimming they move their pectoral flippers in a clapping motion underneath their body and pull them back up into an airplane position, causing forward motion. During the swimming motion it is really important that they rotate their front flipper in order to decrease drag through the water column and increase their efficiency. Sea turtles exhibit a natural suite of behavior skills that help them direct themselves towards the ocean as well as identify the transition from sand to water after hatching. If rotated in the pitch, yaw or roll direction the hatchlings are capable of counteracting the forces acting upon them by correcting with either their pectoral or pelvic flippers and redirecting themselves towards the open ocean.


Terrestrial locomotion


Terrestrial locomotion of fish

Terrestrial locomotion poses new obstacles such as
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
and new media, including sand, mudd, twigs, logs, debris, grass and many more. Fins and flippers are aquatically adapted appendages and typically aren't very useful in such an environment. It could be hypothesized that fish would try to "swim" on land, but studies have shown that some fish evolved to cope with the terrestrial environment. Mudskippers, for example demonstrate a 'crutching' gait which enables them to 'walk' over muddy surfaces as well as dig burrows to hide in. Mudskippers are also able to jump up to 3 cm distances. This behavior is described as starting with a J-curvature of the body at about 2/3 of its body length (with its tail wrapped towards the head), followed by a straightening of their body which propulses them like a projectile through the air. This behavior enables them to cope with the new environment and opens their habitat to new food sources as well as new predators.


Terrestrial locomotion of marine reptiles

Reptiles, such as sea turtles spend most of their lives in the ocean. However, their
life cycle Life cycle, life-cycle, or lifecycle may refer to: Science and academia *Biological life cycle, the sequence of life stages that an organism undergoes from birth to reproduction ending with the production of the offspring * Life-cycle hypothesis ...
requires the females to come on shore and lay their nests on the beach. Consequently, the hatchlings emerge from the sand and have to run toward the water. Depending on their species, sea turtles are described to have either a symmetrical gait (diagonally opposite limbs are moving together) or an asymmetrical gait (Contra-lateral limbs move together).Wyneken, J. 1997. Sea Turtle Locomotion: Mechanisms, Behavior, and Energetics. in CRC Press (edt. by Lutz, P.L. and Musick, J.A.) 165-198. For example, loggerhead sea turtle hatchlings are commonly seen exhibiting symmetrical gait on sand, whereas, leatherback sea turtles employ the asymmetrical gait while on land. Notably, leatherbacks employ their front (pelvic) flippers more during forward terrestrial locomotion. Sea turtles can be seen nesting on
subtropical The subtropical zones or subtropics are geographical and climate zones to the north and south of the tropics. Geographically part of the temperate zones of both hemispheres, they cover the middle latitudes from to approximately 35° north a ...
and
tropical The tropics are the regions of Earth surrounding the Equator. They are defined in latitude by the Tropic of Cancer in the Northern Hemisphere at N and the Tropic of Capricorn in the Southern Hemisphere at S. The tropics are also referred to ...
beaches all around the world and exhibit such behavior such as arribada (
Collective animal behavior Collective animal behaviour is a form of social behavior involving the coordinated behavior of large groups of similar animals as well as emergent properties of these groups. This can include the costs and benefits of group membership, the tra ...
). This is a phenomenon seen in
Kemp's ridley Kemp's ridley sea turtle (''Lepidochelys kempii''), also called the Atlantic ridley sea turtle, is the rarest species of sea turtle and is the world's most endangered species of sea turtle. It is one of two living species in the genus '' Lepido ...
turtles which emerge all at once in one night only onto the beach to lay their nests.


See also

*
Animal locomotion Animal locomotion, in ethology, is any of a variety of methods that animals use to move from one place to another. Some modes of locomotion are (initially) self-propelled, e.g., running, swimming, jumping, flying, hopping, soaring and gliding. Th ...
*
Kinematics Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. Kinematics, as a fiel ...
*
Terrestrial locomotion Terrestrial locomotion has evolved as animals adapted from aquatic to terrestrial environments. Locomotion on land raises different problems than that in water, with reduced friction being replaced by the increased effects of gravity. As viewe ...


References


Further reading

* Vogel, Steven (1994) ''Life in Moving Fluids'': The physical biology of flow. 2nd edt. Princeton University Press, Princeton, NJ. * McNeill Alexander, Robert. (2003) ''Principles of Animal Locomotion''. Princeton University Press, Princeton, N.J.


External links

* http://www.people.fas.harvard.edu/~glauder/ * https://web.archive.org/web/20040804153413/http://darwin.wcupa.edu/%7Ebiology/fish/ * http://www.cbid.gatech.edu/ * http://seaturtle.org/ * http://www.ap.gatech.edu/Chang/Lab/APPH6232.html
Research for this Wikipedia entry was conducted as a part of a Locomotion Neuromechanics course (APPH 6232) offered in the School of Applied Physiology at Georgia Tech
{{DEFAULTSORT:Fin And Flipper Locomotion Aquatic locomotion