Phosphorite Mine Oron Israel 070313.jpg
   HOME

TheInfoList



OR:

Phosphorite, phosphate rock or rock phosphate is a non-
detrital Detritus (; adj. ''detrital'' ) is particles of rock derived from pre-existing rock through weathering and erosion.Essentials of Geology, 3rd Ed, Stephen Marshak, p G-7 A fragment of detritus is called a clast.Essentials of Geology, 3rd Ed, Stephe ...
sedimentary rock Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles ...
that contains high amounts of
phosphate minerals Phosphate minerals contain the tetrahedrally coordinated phosphate (PO43−) anion along sometimes with arsenate (AsO43−) and vanadate (VO43−) substitutions, and chloride (Cl−), fluoride (F−), and hydroxide (OH−) anions that also fi ...
. The phosphate content of phosphorite (or grade of phosphate rock) varies greatly, from 4% to 20%
phosphorus pentoxide Phosphorus pentoxide is a chemical compound with molecular formula P4 O10 (with its common name derived from its empirical formula, P2O5). This white crystalline solid is the anhydride of phosphoric acid. It is a powerful desiccant and dehydra ...
(P2O5). Marketed phosphate rock is enriched ("beneficiated") to at least 28%, often more than 30% P2O5. This occurs through washing, screening, de-liming, magnetic separation or flotation. By comparison, the average phosphorus content of sedimentary rocks is less than 0.2%.Blatt, Harvey and Robert J. Tracy, ''Petrology'', Freeman, 1996, 2nd ed. pp. 345–349 The phosphate is present as fluorapatite Ca5(PO4)3F typically in
cryptocrystalline Cryptocrystalline is a rock texture made up of such minute crystals that its crystalline nature is only vaguely revealed even microscopically in thin section by transmitted polarized light. Among the sedimentary rocks, chert and flint are crypt ...
masses (grain sizes < 1 μm) referred to as
collophane Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of Hydroxide, OH−, Fluoride, F− and Chloride, Cl− ions, respectively, in the crystal. The formula of the admixture ...
-sedimentary apatite deposits of uncertain origin. It is also present as hydroxyapatite Ca5(PO4)3OH or Ca10(PO4)6(OH)2, which is often dissolved from vertebrate bones and teeth, whereas fluorapatite can originate from
hydrothermal vein In geology, a vein is a distinct sheetlike body of crystallized minerals within a rock. Veins form when mineral constituents carried by an aqueous solution within the rock mass are deposited through precipitation. The hydraulic flow involved ...
s. Other sources also include chemically dissolved
phosphate mineral Phosphate minerals contain the tetrahedrally coordinated phosphate (PO43−) anion along sometimes with arsenate (AsO43−) and vanadate (VO43−) substitutions, and chloride (Cl−), fluoride (F−), and hydroxide (OH−) anions that also fit ...
s from
igneous Igneous rock (derived from the Latin word ''ignis'' meaning fire), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma or ...
and
metamorphic rock Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock ( protolith) is subjected to temperatures greater than and, often, elevated pressure of or more, caus ...
s. Phosphorite deposits often occur in extensive layers, which cumulatively cover tens of thousands of square kilometres of the Earth's crust.
Limestone Limestone ( calcium carbonate ) is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of . Limestone forms whe ...
s and mudstones are common phosphate-bearing rocks. Phosphate-rich sedimentary rocks can occur in dark brown to black beds, ranging from centimeter-sized laminae to beds that are several meters thick. Although these thick beds can exist, they are rarely only composed of phosphatic sedimentary rocks. Phosphatic sedimentary rocks are commonly accompanied by or interbedded with shales,
chert Chert () is a hard, fine-grained sedimentary rock composed of microcrystalline or cryptocrystalline quartz, the mineral form of silicon dioxide (SiO2). Chert is characteristically of biological origin, but may also occur inorganically as a ...
s, limestone,
dolomite Dolomite may refer to: *Dolomite (mineral), a carbonate mineral *Dolomite (rock), also known as dolostone, a sedimentary carbonate rock *Dolomite, Alabama, United States, an unincorporated community *Dolomite, California, United States, an unincor ...
s and sometimes
sandstone Sandstone is a clastic sedimentary rock composed mainly of sand-sized (0.0625 to 2 mm) silicate grains. Sandstones comprise about 20–25% of all sedimentary rocks. Most sandstone is composed of quartz or feldspar (both silicates ...
. These layers contain the same textures and structures as fine-grained limestones and may represent
diagenetic Diagenesis () is the process that describes physical and chemical changes in sediments first caused by water-rock interactions, microbial activity, and compaction after their deposition. Increased pressure and temperature only start to play a ...
replacements of
carbonate minerals Carbonate minerals are those minerals containing the carbonate ion, . Carbonate divisions Anhydrous carbonates *Calcite group: trigonal **Calcite CaCO3 **Gaspéite (Ni,Mg,Fe2+)CO3 **Magnesite MgCO3 **Otavite CdCO3 **Rhodochrosite MnCO3 **Sider ...
by phosphates. They also can be composed of peloids, ooids, fossils, and clasts that are made up of apatite. There are some phosphorites that are very small and have no distinctive granular textures. This means that their textures are similar to that of collophane, or fine
micrite Micrite is a limestone constituent formed of calcareous particles ranging in diameter up to four μm formed by the recrystallization of lime mud. Flügel, Erik, ''Microfacies of Carbonate Rocks: Analysis, Interpretation and Application,'' Springe ...
-like texture. Phosphatic grains may be accompanied by organic matter, clay minerals,
silt Silt is granular material of a size between sand and clay and composed mostly of broken grains of quartz. Silt may occur as a soil (often mixed with sand or clay) or as sediment mixed in suspension with water. Silt usually has a floury feel ...
-sized detrital grains, and
pyrite The mineral pyrite (), or iron pyrite, also known as fool's gold, is an iron sulfide with the chemical formula Fe S2 (iron (II) disulfide). Pyrite is the most abundant sulfide mineral. Pyrite's metallic luster and pale brass-yellow hue giv ...
. Peloidal or pelletal phosphorites occur normally; whereas oolitic phosphorites are not common. Phosphorites are known from Proterozoic
banded iron formation Banded iron formations (also known as banded ironstone formations or BIFs) are distinctive units of sedimentary rock consisting of alternating layers of iron oxides and iron-poor chert. They can be up to several hundred meters in thickness ...
s in Australia, but are more common from
Paleozoic The Paleozoic (or Palaeozoic) Era is the earliest of three geologic eras of the Phanerozoic Eon. The name ''Paleozoic'' ( ;) was coined by the British geologist Adam Sedgwick in 1838 by combining the Greek words ''palaiós'' (, "old") and ' ...
and Cenozoic sediments. The Permian Phosphoria Formation of the western United States represents some 15 million years of sedimentation. It reaches a thickness of 420 metres and covers an area of 350,000 km2. Commercially mined phosphorites occur in France, Belgium, Spain, Morocco, Tunisia and Algeria. In the United States phosphorites have been mined in Florida, Tennessee, Wyoming, Utah, Idaho and Kansas.


Classification of phosphatic sedimentary rocks

(1) ''Pristine:'' Phosphates that are in pristine conditions have not undergone bioturbation. In other words, the word pristine is used when phosphatic sediment, phosphatized stromatolites and phosphate hardgrounds have not been disturbed. (2) ''Condensed:'' Phosphatic particles, laminae and beds are considered condensed when they have been concentrated. This is helped by the extracting and reworking processes of phosphatic particles or bioturbation. (3) ''Allochthonous:'' Phosphatic particles that were moved by turbulent or gravity-driven flows and deposited by these flows.


Phosphorus cycle, formation and accumulation

The heaviest accumulation of phosphorus is mainly on the ocean floor. Phosphorus accumulation occurs from atmospheric precipitation, dust, glacial runoff, cosmic activity, underground hydrothermal volcanic activity, and deposition of organic material. The primary inflow of dissolved phosphorus is from continental weathering, brought out by rivers to the ocean. It is then processed by both micro- and macro-organisms. Diatomaceous plankton, phytoplankton, and zooplankton process and dissolve phosphorus in the water. The bones and teeth of certain fish (e.g. anchovies) absorb phosphorus and are later deposited and buried in the ocean sediment.Baturin, G.N, Phosphorites on the Sea Floor: Origin, Composition and Distribution. Elsevier. 1981, New York, pp. 24–50 . Depending on the pH and salinity levels of the ocean water, organic matter will decay and releases phosphorus from sediment in shallow basins. Bacteria and enzymes dissolve organic matter on the water bottom interface, thus returning phosphorus to the beginning of its biogenic cycle. Mineralization of organic matter can also cause the release of phosphorus back into the ocean water.


Depositional environments

Phosphates are known to be deposited in a wide range of depositional environments. Normally phosphates are deposited in very shallow, near-shore marine or low energy environments. This includes environments such as supratidal zones, littoral or intertidal zones, and most importantly estuarine. Currently, areas of oceanic upwelling cause the formation of phosphates. This is because of the constant stream of phosphate brought from the large, deep ocean reservoir (see below). This cycle allows continuous growth of organisms. ''Supratidal zones:'' Supratidal environments are part of the tidal flat system where the presence of strong wave activity is non-existent. Tidal flat systems are created along open coasts and relatively low wave energy environments. They can also develop on high energy coasts behind barrier islands where they are sheltered from the high energy wave action. Within the tidal flat system, the supratidal zone lies in a very high tide level. However, it can be flooded by extreme tides and cut across by tidal channels. This is also subaerially exposed, but is flooded twice a month by spring tides.Boggs, Sam, Jr. (2006). ''Principles of Sedimentology and Stratigraphy'' (4th ed.), Pearson Education Inc., Upper Saddle River, NJ, pp. 217–223 ''Littoral environments/intertidal zones:'' Intertidal zones are also part of the tidal flat system. The intertidal zone is located within the mean high and low tide levels. It is subject to tidal shifts, which means that it is subaerially exposed once or twice a day. It is not exposed long enough to withhold vegetation. The zone contains both suspension sedimentation and bed load. ''Estuarine environments'': Estuarine environments, or estuaries, are located at the lower parts of rivers that flow into the open sea. Since they are in the seaward section of the drowned valley system they receive sediment from both marine and fluvial sources. These contain facies that are affected by tide and wave fluvial processes. An estuary is considered to stretch from the landward limit of tidal facies to the seaward limit of coastal facies. Phosphorites are often deposited in fjords within estuarine environments. These are estuaries with shallow sill constrictions. During Holocene sea-level rise, fjord estuaries formed by drowning of glacially-eroded U-shaped valleys. The most common occurrence of phosphorites is related to strong marine upwelling of sediments. Upwelling is caused by deep water currents that are brought up to coastal surfaces where a large deposition of phosphorites may occur. This type of environment is the main reason why phosphorites are commonly associated with silica and chert. Estuaries are also known as a phosphorus “trap”. This is because coastal estuaries contain a high productivity of phosphorus from marsh grass and benthic algae which allow an equilibrium exchange between living and dead organisms.


Types of phosphorite deposition

*Phosphate nodules: These are spherical concentrations that are randomly distributed along the floor of continental shelves. Most phosphorite grains are sand size although particles greater than 2 mm may be present. These larger grains, referred to as Nodule (geology), nodules, can range up to several tens of centimeters in size. Phosphate nodules are known to occur in significant quantities offshore northern Chile. *Bioclastic phosphates or bone beds: Bone beds are bedded phosphate deposits that contain concentrations of small skeletal particles and coprolites. Some also contain invertebrate fossils like brachiopods and become more enriched in P2O5 after diagenetic processes have occurred. Bioclastic phosphates can also be cemented by phosphate minerals. *Phosphatization: Phosphatization is a type of rare diagenetic processes. It occurs when fluids that are rich in phosphate are leached from guano. These are then concentrated and reprecipitated in limestone. Phosphatized fossils or fragments of original phosphatic shells are important components within some these deposits.


Tectonic and oceanographic settings of marine phosphorites

*Epeiric sea phosphorites: Epeiric sea phosphorites are within marine shelf environments. These are in a broad and shallow cratonic setting. This is where granular phosphorites, phosphorite hardgrounds, and nodules occur.Middleton V. Gerald, 2003 Encyclopedia of Earth Sciences series. Encyclopedia of Sediment and Sedimentary Rocks. Kluwer Academic Publishers. Dordrect, Boston, London. pp 131, 727, 519–524. *Continental margin phosphorites: Convergent, passive, upwelling, non-upwelling. This environment accumulates phosphorites in the form of hardgrounds, nodules and granular beds. These accumulate by carbonate fluorapatite precipitation during early diagenesis in the upper few tens of centimeters of sediment. There are two different environmental conditions in which phosphorites are produced within continental margins. Continental margins can consist of organic rich sedimentation, strong coastal upwelling, and pronounced low oxygen zones. They can also form in conditions such as oxygen rich bottom waters and organic poor sediments. *Seamount phosphorites: These are phosphorites that occur in seamounts, guyots, or flat topped seamounts, seamount ridges. These phosphorites are produced in association with iron and magnesium bearing crusts. In this setting the productivity of phosphorus is recycled within an iron oxidation reduction phosphorus cycle. This cycle can also form glauconite which is normally associated with modern and ancient phosphorites. *Insular phosphorites: Insular phosphorites are located in carbonate islands, plateaus, coral island consisting of a reef surrounding a lagoon or, atoll lagoon, marine lakes. The phosphorite here originates from guano. Replacement of deep sea sediments precipitates, that has been formed in place on the ocean floor.


Production and use


Production

Deposits which contain phosphate in quantity and concentration which are economic to Mining, mine as ore for their phosphate content are not particularly common. The two main sources for phosphate are guano, formed from bird or bat droppings, and rocks containing concentrations of the calcium phosphate mineral, apatite. , the US is the world's leading producer and exporter of phosphate fertilizers, accounting for about 37% of world P2O5 exports. , the world's total economic demonstrated resource of rock phosphate is 70 Tonne, gigatonnes, which occurs principally as sedimentary marine phosphorites. , China, the United States and Morocco are the world's largest miners of phosphate rock, with a production of 77 Tonne, megatonnes, 29.4 Mt and 26.8 Mt (including 2.5 Mt in the Sahara of Morocco) respectively in 2012 while global production reached 195 Mt. It is thought that in India there are almost 260 million tons of rock phosphate. Other countries with significant production include Brazil, Russia, Jordan and Tunisia. Historically, large amounts of phosphates were obtained from deposits on small islands such as Christmas Island and Nauru, but these sources are now largely depleted. Phosphate ore is mined and beneficiated into rock phosphate. Beneficiation of phosphate ore is a process which includes washing, flotation and calcining. Froth flotation is used to concentrate the mined ore to rock phosphate. The mined ore is crushed and washed, creating a slurry, this ore slurry is then treated with fatty acids to cause calcium phosphate to become hydrophobic. This rock phosphate is then either solubilized to produce wet-process phosphoric acid, or smelted to produce elemental phosphorus. Phosphoric acid is reacted with phosphate rock to produce the fertilizer triple superphosphate or with anhydrous ammonia to produce the ammonium phosphate fertilizers. Elemental phosphorus is the base for furnace-grade phosphoric acid, phosphorus pentasulfide,
phosphorus pentoxide Phosphorus pentoxide is a chemical compound with molecular formula P4 O10 (with its common name derived from its empirical formula, P2O5). This white crystalline solid is the anhydride of phosphoric acid. It is a powerful desiccant and dehydra ...
, and phosphorus trichloride.


Uses

Approximately 90% of rock phosphate production is used for fertilizer and animal feed supplements and the balance for industrial chemicals. In addition to phosphate fertilisers for agriculture, phosphorus from rock phosphate is also used in animal-feed supplements, food preservatives, baking flour, pharmaceuticals, anticorrosion agents, cosmetics, fungicides, insecticides, detergents, ceramics, water treatment and metallurgy. For use in the chemical fertilizer industry, beneficiated rock phosphate must be concentrated to levels of at least 28% phosphorus pentoxide (P2O5), although most marketed grades of phosphate rock are 30% or more. It must also have reasonable amounts of calcium carbonate (5%), and <4% combined iron and aluminium oxides. Worldwide, the resources of high-grade ore are declining, and use of lower grade ore may become more attractive. Beneficiated rock phosphate is also marketed and accepted as an Organic agriculture, "organic" alternative to "chemical" phosphate fertilizer which has been further concentrated from it, because it is perceived as being more "natural". According to a report for the FAO, it can be more Sustainable agriculture, sustainable to apply rock phosphate as a fertilizer in certain soil types and countries, although it has many drawbacks. According to the report it may have higher sustainability compared to more concentrated fertilizers because of reduced manufacturing costs and the possibility of local procurement of the refined ore. Rare earth elements are being found within phosphorites. With increasing demand from modern technology a different method of finding rare earth elements, independent of China, is becoming increasingly important. With yields greater than those from deposits in China, phosphorites offer a new resource located within the U.S. that would likely lead to independence from influence of countries outside of the U.S."Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?"
/ref>


See also

* Phosphate mining in the United States


References


External links

{{Commons category multi , Phosphate mines , Phosphate minerals
US Geological Survey

USGS Statistics

PIRSA website

International Fertilizer Industry Association

Science Direct
Economic geology Sedimentary rocks Phosphorus Phosphate minerals Industrial minerals