Jupiter bronze Luxembourg MNHA.jpg
   HOME

TheInfoList



OR:

Jupiter is the fifth
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
from the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
and the largest in the Solar System. It is a
gas giant A gas giant is a giant planet composed mainly of hydrogen and helium. Gas giants are also called failed stars because they contain the same basic elements as a star. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" ...
with a
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
more than two and a half times that of all the other planets in the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
combined, but slightly less than one-thousandth the mass of the Sun. Jupiter is the third brightest natural object in the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
's night sky after the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
and
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never f ...
, and it has been observed since
prehistoric times Prehistory, also known as pre-literary history, is the period of human history between the use of the first stone tools by hominins 3.3 million years ago and the beginning of recorded history with the invention of writing systems. The use of ...
. It was named after the Roman god Jupiter, the king of the gods. Jupiter is primarily composed of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
, but
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
constitutes one-quarter of its mass and one-tenth of its volume. It probably has a rocky core of heavier elements, but, like the other
giant planet The giant planets constitute a diverse type of planet much larger than Earth. They are usually primarily composed of low-boiling-point materials (volatiles), rather than rock or other solid matter, but massive solid planets can also exist. The ...
s in the Solar System, it lacks a well-defined solid surface. The ongoing contraction of Jupiter's interior generates more heat than it receives from the Sun. Because of its rapid rotation, the planet's shape is an oblate spheroid: it has a slight but noticeable bulge around the equator. The outer atmosphere is divided into a series of latitudinal bands, with turbulence and storms along their interacting boundaries. A prominent result of this is the Great Red Spot, a giant storm which has been observed since at least 1831. Jupiter is surrounded by a faint
planetary ring A ring system is a disc or ring, orbiting an astronomical object, that is composed of solid material such as dust and moonlets, and is a common component of satellite systems around giant planets. A ring system around a planet is also known a ...
system and a powerful magnetosphere. Jupiter's magnetic tail is nearly long, covering nearly the entire distance to Saturn's orbit. Jupiter has 82 known moons and likely many more, including the four large moons discovered by
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He wa ...
in 1610: Io, Europa, Ganymede, and
Callisto Callisto most commonly refers to: *Callisto (mythology), a nymph *Callisto (moon), a moon of Jupiter Callisto may also refer to: Art and entertainment *''Callisto series'', a sequence of novels by Lin Carter *''Callisto'', a novel by Torsten Kro ...
. Io and Europa are about the size of Earth's Moon; Callisto is almost the size of the planet Mercury, and Ganymede is larger. ''
Pioneer 10 ''Pioneer 10'' (originally designated Pioneer F) is an American space probe, launched in 1972 and weighing , that completed the first mission to the planet Jupiter. Thereafter, ''Pioneer 10'' became the first of five artificial objects to ach ...
'' was the first spacecraft to visit Jupiter, making its closest approach to the planet in December 1973. Jupiter has since been explored by multiple robotic spacecraft, beginning with the ''
Pioneer Pioneer commonly refers to a settler who migrates to previously uninhabited or sparsely inhabited land. In the United States pioneer commonly refers to an American pioneer, a person in American history who migrated west to join in settling and de ...
'' and '' Voyager'' flyby missions from 1973 to 1979, and later with the ''Galileo'' orbiter in 1995. In 2007, the '' New Horizons'' visited Jupiter using its gravity to increase its speed, bending its trajectory en route to
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Sun. It is the largest ...
. The latest probe to visit the planet, ''
Juno Juno commonly refers to: *Juno (mythology), the Roman goddess of marriage and queen of the gods *Juno (film), ''Juno'' (film), 2007 Juno may also refer to: Arts, entertainment and media Fictional characters *Juno, in the film ''Jenny, Juno'' *Ju ...
'', entered orbit around Jupiter in July 2016. Future targets for exploration in the Jupiter system include the probable ice-covered liquid ocean of Europa.


Name and symbol

In both the ancient Greek and Roman civilizations, Jupiter was named after the chief god of the divine
pantheon Pantheon may refer to: * Pantheon (religion), a set of gods belonging to a particular religion or tradition, and a temple or sacred building Arts and entertainment Comics *Pantheon (Marvel Comics), a fictional organization * ''Pantheon'' (Lone S ...
:
Zeus Zeus or , , ; grc, Δῐός, ''Diós'', label= genitive Boeotian Aeolic and Laconian grc-dor, Δεύς, Deús ; grc, Δέος, ''Déos'', label= genitive el, Δίας, ''Días'' () is the sky and thunder god in ancient Greek reli ...
for the Greeks and
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth t ...
for the Romans. The
International Astronomical Union The International Astronomical Union (IAU; french: link=yes, Union astronomique internationale, UAI) is a nongovernmental organisation with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreac ...
(IAU) formally adopted the name Jupiter for the planet in 1976. The IAU names newly discovered satellites of Jupiter for the mythological lovers, favourites, and descendants of the god. The
planetary symbol A planet symbol (or ''planetary symbol'') is a graphical symbol used in astrology and astronomy to represent a classical planet (including the Sun and the Moon) or one of the modern planets. The symbols were also used in alchemy to represent the me ...
for Jupiter, , descends from a Greek
zeta Zeta (, ; uppercase Ζ, lowercase ζ; grc, ζῆτα, el, ζήτα, label= Demotic Greek, classical or ''zē̂ta''; ''zíta'') is the sixth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 7. It was derived f ...
with a horizontal stroke, , as an abbreviation for ''Zeus''. Jove, the archaic name of Jupiter, came into use as a poetic name for the planet around the 14th century. The Romans named the fifth day of the week ''diēs Iovis'' ("Jove's Day") after the planet Jupiter. In
Germanic mythology Germanic mythology consists of the body of myths native to the Germanic peoples, including Norse mythology, Anglo-Saxon mythology, and Continental Germanic mythology. It was a key element of Germanic paganism. Origins As the Germanic langu ...
, Jupiter is equated to
Thor Thor (; from non, Þórr ) is a prominent god in Germanic paganism. In Norse mythology, he is a hammer-wielding god associated with lightning, thunder, storms, sacred groves and trees, strength, the protection of humankind, hallowing, an ...
, whence the English name ''Thursday'' for the Roman ''dies Jovis''. The original Greek deity ''Zeus'' supplies the root ''zeno-'', which is used to form some Jupiter-related words, such as '' zenographic''. ''Jovian'' is the adjectival form of Jupiter. The older adjectival form ''jovial'', employed by astrologers in the
Middle Ages In the history of Europe, the Middle Ages or medieval period lasted approximately from the late 5th to the late 15th centuries, similar to the post-classical period of global history. It began with the fall of the Western Roman Empire ...
, has come to mean "happy" or "merry", moods ascribed to Jupiter's influence in
astrology Astrology is a range of divinatory practices, recognized as pseudoscientific since the 18th century, that claim to discern information about human affairs and terrestrial events by studying the apparent positions of celestial objects. Di ...
.


Formation and migration

Jupiter is believed to be the oldest planet in the Solar System. Current models of Solar System formation suggest that Jupiter formed at or beyond the snow line: a distance from the early Sun where the temperature is sufficiently cold for
volatiles Volatiles are the group of chemical elements and chemical compounds that can be readily vaporized. In contrast with volatiles, elements and compounds that are not readily vaporized are known as refractory substances. On planet Earth, the term ...
such as water to condense into solids. The planet began as a solid core, which then accumulated its gaseous atmosphere. As a consequence, the planet must have formed before the solar nebula was fully dispersed. During its formation, Jupiter's mass gradually increased until it had 20 times the mass of the Earth (about half of which was made up of silicates, ices and other heavy-element constituents). When the proto-Jupiter grew larger than 50 Earth masses it created a gap in the solar nebula. Thereafter, the growing planet reached its final masses in 3–4 million years. According to the "
grand tack hypothesis In planetary astronomy, the grand tack hypothesis proposes that Jupiter formed at 3.5 AU, then migrated inward to 1.5 AU, before reversing course due to capturing Saturn in an orbital resonance, eventually halting near its current orbit at 5.2 AU ...
", Jupiter began to form at a distance of roughly from the Sun. As the young planet accreted mass, interaction with the gas disk orbiting the Sun and
orbital resonance In celestial mechanics, orbital resonance occurs when orbiting bodies exert regular, periodic gravitational influence on each other, usually because their orbital periods are related by a ratio of small integers. Most commonly, this relationsh ...
s with Saturn caused it to migrate inward. This upset the orbits of several super-Earths orbiting closer to the Sun, causing them to collide destructively. Saturn would later have begun to migrate inwards too, much faster than Jupiter, until the two planets became captured in a 3:2 mean motion resonance at approximately from the Sun. This changed the direction of migration, causing them to migrate away from the Sun and out of the inner system to their current locations. All of this happened over a period of 3–6 million years, with the final migration of Jupiter occurring over several hundred thousand years. Jupiter's departure from the inner solar system eventually allowed the inner planets—including Earth—to form from the rubble. There are several problems with the grand tack hypothesis. The resulting formation timescales of terrestrial planets appear to be inconsistent with the measured elemental composition. It is likely that Jupiter would have settled into an orbit much closer to the Sun if it had migrated through the solar nebula. Some competing models of Solar System formation predict the formation of Jupiter with orbital properties that are close to those of the present day planet. Other models predict Jupiter forming at distances much farther out, such as . Based on Jupiter's composition, researchers have made the case for an initial formation outside the molecular nitrogen (N2) snowline, which is estimated at from the Sun, and possibly even outside the argon snowline, which may be as far as . Having formed at one of these extreme distances, Jupiter would then have migrated inwards to its current location. This inward migration would have occurred over a roughly 700,000-year time period, during an epoch approximately 2–3 million years after the planet began to form. In this model, Saturn, Uranus and Neptune would have formed even further out than Jupiter, and Saturn would also have migrated inwards.


Physical characteristics

Jupiter is a
gas giant A gas giant is a giant planet composed mainly of hydrogen and helium. Gas giants are also called failed stars because they contain the same basic elements as a star. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" ...
, being primarily composed of gas and liquid rather than solid matter. It is the largest planet in the Solar System, with a diameter of at its equator. The average density of Jupiter, 1.326 g/cm3, is about the same as Inverted sugar syrup, simple syrup (syrup United States Pharmacopeia, USP), and is lower than those of the four terrestrial planets.


Composition

Jupiter's upper atmosphere is about 90% hydrogen and 10% helium by volume. Since helium atoms are more massive than hydrogen molecules, Atmosphere of Jupiter, Jupiter's atmosphere is approximately 24% helium by mass. The atmosphere contains trace amounts of methane, water vapour, ammonia, and silicon-based compounds. There are also fractional amounts of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. The outermost layer of the atmosphere contains crystals of frozen ammonia. Through infrared and ultraviolet measurements, trace amounts of benzene and other hydrocarbons have also been found. The interior of Jupiter contains denser materials—by mass it is roughly 71% hydrogen, 24% helium, and 5% other elements. The atmospheric proportions of hydrogen and helium are close to the theoretical composition of the primordial solar nebula. Neon in the upper atmosphere only consists of 20 parts per million by mass, which is about a tenth as abundant as in the Sun. Helium is also reduced to about 80% of the Sun's helium composition. This depletion is a result of Precipitation (meteorology), precipitation of these elements as helium-rich droplets, a process that happens deep in the interior of the planet. Based on spectroscopy, Saturn is thought to be similar in composition to Jupiter, but the other giant planets Uranus and Neptune have relatively less hydrogen and helium and relatively more of the next Abundance of the chemical elements, most common elements, including oxygen, carbon, nitrogen, and sulfur. These planets are known as ice giants, because the majority of their volatility (chemistry), volatile compounds are in solid form.


Size and mass

Jupiter's mass is 2.5 times that of all the other planets in the Solar System combined—so massive that its barycentre with the Sun lies above the Photosphere, Sun's surface at 1.068 solar radius, solar radii from the Sun's centre. Jupiter is much larger than Earth and considerably less dense: it has 1,321 times the volume of the Earth, but only 318 times the mass. Jupiter's radius is about one tenth the radius of the Sun, and its mass is one thousandth the Solar mass, mass of the Sun, as the densities of the two bodies are similar. A "Jupiter mass" ( or ) is often used as a unit to describe masses of other objects, particularly extrasolar planets and brown dwarfs. For example, the extrasolar planet HD 209458 b has a mass of , while Kappa Andromedae b has a mass of . Theoretical models indicate that if Jupiter had over 40% more mass, the interior would be so compressed that its volume would ''decrease'' despite the increasing amount of matter. For smaller changes in its mass, the radius would not change appreciably. As a result, Jupiter is thought to have about as large a diameter as a planet of its composition and evolutionary history can achieve. The process of further shrinkage with increasing mass would continue until appreciable stellar ignition was achieved. Although Jupiter would need to be about 75 times more massive to hydrogen fusion, fuse hydrogen and become a star, the smallest red dwarf may be only slightly larger in radius than Saturn. Jupiter radiates more heat than it receives through solar radiation, due to the Kelvin–Helmholtz mechanism within its contracting interior. This process causes Jupiter to shrink by about /yr. When it formed, Jupiter was hotter and was about twice its current diameter.


Internal structure

Before the early 21st century, most scientists proposed one of two scenarios for the formation of Jupiter. If the planet accreted first as a solid body, it would consist of a dense planetary core, core, a surrounding layer of liquid metallic hydrogen (with some helium) extending outward to about 80% of the radius of the planet, and an outer atmosphere consisting primarily of molecular hydrogen. Alternatively, if the planet collapsed directly from the gaseous protoplanetary disk, it was expected to completely lack a core, consisting instead of denser and denser fluid (predominantly molecular and metallic hydrogen) all the way to the centre. Data from the Juno (spacecraft), ''Juno'' mission showed that Jupiter has a very diffuse core that mixes into its mantle. This mixing process could have arisen during formation, while the planet accreted solids and gases from the surrounding nebula. Alternatively, it could have been caused by an impact from a planet of about ten Earth masses a few million years after Jupiter's formation, which would have disrupted an originally solid Jovian core. It is estimated that the core takes up 30–50% of the planet's radius, and contains heavy elements with a combined mass 7–25 times the Earth. Outside the layer of metallic hydrogen lies a transparent interior atmosphere of hydrogen. At this depth, the pressure and temperature are above molecular hydrogen's critical pressure of 1.3 Pascal (unit), MPa and critical temperature of . In this state, there are no distinct liquid and gas phases—hydrogen is said to be in a supercritical fluid state. The hydrogen and helium gas extending downward from the cloud layer gradually transitions to a liquid in deeper layers, possibly resembling something akin to an ocean of liquid hydrogen and other supercritical fluids. Physically, the gas gradually becomes hotter and denser as depth increases. Rain-like droplets of helium and neon precipitate downward through the lower atmosphere, depleting the abundance of these elements in the upper atmosphere. Calculations suggest that helium drops separate from metallic hydrogen at a radius of ( below the cloudtops) and merge again at ( beneath the clouds). Rainfalls of extraterrestrial diamonds, diamonds have been suggested to occur, as well as on Saturn and the ice giants Uranus and Neptune. The temperature and pressure inside Jupiter increase steadily inward because the heat of planetary formation can only escape by convection. At a surface depth where the atmospheric pressure level is , the temperature is around . The region of supercritical hydrogen changes gradually from a molecular fluid to a metallic fluid spans pressure ranges of with temperatures of , respectively. The temperature of Jupiter's diluted core is estimated to be with a pressure of around .


Atmosphere

The atmosphere of Jupiter extends to a depth of below the cloud layers.


Cloud layers

Jupiter is perpetually covered with clouds of ammonia crystals, which may contain ammonium hydrosulfide as well. The clouds are located in the tropopause layer of the atmosphere, forming bands at different latitudes, known as tropical regions. These are subdivided into lighter-hued ''zones'' and darker ''belts''. The interactions of these conflicting Atmospheric circulation, circulation patterns cause storms and turbulence. Wind speeds of are common in Jet stream#Other planets, zonal jet streams. The zones have been observed to vary in width, colour and intensity from year to year, but they have remained stable enough for scientists to name them. The cloud layer is about deep, and consists of at least two decks of ammonia clouds: a thin clearer region on top with a thick lower deck. There may be a thin layer of water (properties), water clouds underlying the ammonia clouds, as suggested by flashes of lightning detected in the atmosphere of Jupiter. These electrical discharges can be up to a thousand times as powerful as lightning on Earth. The water clouds are assumed to generate thunderstorms in the same way as terrestrial thunderstorms, driven by the heat rising from the interior. The Juno mission revealed the presence of "shallow lightning" which originates from ammonia-water clouds relatively high in the atmosphere. These discharges carry "mushballs" of water-ammonia slushes covered in ice, which fall deep into the atmosphere. Upper-atmospheric lightning has been observed in Jupiter's upper atmosphere, bright flashes of light that last around 1.4 milliseconds. These are known as "elves" or "sprites" and appear blue or pink due to the hydrogen. The orange and brown colours in the clouds of Jupiter are caused by upwelling compounds that change colour when they are exposed to ultraviolet light from the Sun. The exact makeup remains uncertain, but the substances are thought to be made up of phosphorus, sulfur or possibly hydrocarbons. These colourful compounds, known as chromophores, mix with the warmer clouds of the lower deck. The light-coloured zones are formed when rising convection cells form crystallising ammonia that hides the chromophores from view. Jupiter's low axial tilt means that the poles always receive less solar radiation than the planet's equatorial region. Convection within the interior of the planet transports energy to the poles, balancing out the temperatures at the cloud layer.


Great Red Spot and other vortices

The best known feature of Jupiter is the Great Red Spot, a persistent anticyclone, anticyclonic storm located 22° south of the equator. It is known to have existed since at least 1831, and possibly since 1665. Images by the Hubble Space Telescope have shown as many as two "red spots" adjacent to the Great Red Spot. The storm is visible through Earth-based telescopes with an aperture of 12 cm or larger. The oval object rotates counterclockwise, with a period (physics), period of about six days. The maximum altitude of this storm is about above the surrounding cloudtops. The Spot's composition and the source of its red colour remain uncertain, although photodissociated ammonia reacting with acetylene is a likely explanation. The Great Red Spot is larger than the Earth. Mathematical models suggest that the storm is stable and will be a permanent feature of the planet. However, it has significantly decreased in size since its discovery. Initial observations in the late 1800s showed it to be approximately across. By the time of the '' Voyager'' flybys in 1979, the storm had a length of and a width of approximately . ''Hubble'' observations in 1995 showed it had decreased in size to , and observations in 2009 showed the size to be . , the storm was measured at approximately , and was decreasing in length by about per year. In October 2021, a ''Juno'' flyby mission measured the depth of the Great Red Spot, putting it at around . ''Juno'' missions show that there are several polar cyclone groups at Jupiter's poles. The northern group contains nine cyclones, with a large one in the centre and eight others around it, while its southern counterpart also consists of a centre vortex but is surrounded by five large storms and a single smaller one. These polar structures are caused by the turbulence in Jupiter's atmosphere and can be compared with the Saturn's hexagon, hexagon at Saturn's north pole. In 2000, an atmospheric feature formed in the southern hemisphere that is similar in appearance to the Great Red Spot, but smaller. This was created when smaller, white oval-shaped storms merged to form a single feature—these three smaller white ovals were formed in 1939–1940. The merged feature was named Oval BA. It has since increased in intensity and changed from white to red, earning it the nickname "Little Red Spot". In April 2017, a "Great Cold Spot" was discovered in Jupiter's thermosphere at its Jupiter's North Pole, north pole. This feature is across, wide, and cooler than surrounding material. While this spot changes form and intensity over the short term, it has maintained its general position in the atmosphere for more than 15 years. It may be a giant vortex similar to the Great Red Spot, and appears to be Metastability, quasi-stable like the Vorticity, vortices in Earth's thermosphere. This feature may be formed by interactions between charged particles generated from Io and the strong magnetic field of Jupiter, resulting in a redistribution of heat flow.


Magnetosphere

Jupiter's magnetic field is the strongest of any planet in the Solar System, with a magnetic dipole moment, dipole moment of that is tilted at an angle of 10.31° to the pole of rotation. The surface magnetic field strength varies from up to . This field is thought to be generated by eddy currents—swirling movements of conducting materials—within the liquid metallic hydrogen core. At about 75 Jupiter radii from the planet, the interaction of the magnetosphere with the solar wind generates a bow shock. Surrounding Jupiter's magnetosphere is a magnetopause, located at the inner edge of a magnetosheath—a region between it and the bow shock. The solar wind interacts with these regions, elongating the magnetosphere on Jupiter's lee side and extending it outward until it nearly reaches the orbit of Saturn. The four largest moons of Jupiter all orbit within the magnetosphere, which protects them from the solar wind. The volcanoes on the moon Io emit large amounts of sulfur dioxide, forming a gas torus along the moon's orbit. The gas is Ionization, ionized in Jupiter's magnetosphere, producing sulfur and oxygen ions. They, together with hydrogen ions originating from the atmosphere of Jupiter, form a plasma sheet in Jupiter's equatorial plane. The plasma in the sheet co-rotates with the planet, causing deformation of the dipole magnetic field into that of a magnetodisk. Electrons within the plasma sheet generate a strong radio signature, with short, superimposed bursts in the range of 0.6–30 hertz, MHz that are detectable from Earth with consumer-grade shortwave radio receivers. As Io moves through this torus, the interaction generates Alfvén waves that carry ionized matter into the polar regions of Jupiter. As a result, radio waves are generated through a cyclotron Astrophysical maser, maser mechanism, and the energy is transmitted out along a cone-shaped surface. When Earth intersects this cone, the Radio wave, radio emissions from Jupiter can exceed the radio output of the Sun.


Planetary rings

Jupiter has a faint
planetary ring A ring system is a disc or ring, orbiting an astronomical object, that is composed of solid material such as dust and moonlets, and is a common component of satellite systems around giant planets. A ring system around a planet is also known a ...
system composed of three main segments: an inner torus of particles known as the halo, a relatively bright main ring, and an outer gossamer ring. These rings appear to be made of dust, while Saturn's rings are made of ice. The main ring is most likely made out of material ejected from the satellites Adrastea (moon), Adrastea and Metis (moon), Metis, which is drawn into Jupiter because of the planet's strong gravitational influence. New material is added by additional impacts. In a similar way, the moons Thebe (moon), Thebe and Amalthea (moon), Amalthea are believed to produce the two distinct components of the dusty gossamer ring. There is evidence of a fourth ring that may consist of collisional debris from Amalthea that is strung along the same moon's orbit.


Orbit and rotation

Jupiter is the only planet whose barycentre with the Sun lies outside the volume of the Sun, though by only 7% of the Sun's radius. The average distance between Jupiter and the Sun is 778 million km (5.2 Astronomical unit, AU) and it completes an orbit every 11.86 years. This is approximately two-fifths the orbital period of Saturn, forming a near
orbital resonance In celestial mechanics, orbital resonance occurs when orbiting bodies exert regular, periodic gravitational influence on each other, usually because their orbital periods are related by a ratio of small integers. Most commonly, this relationsh ...
. The orbital plane of Jupiter is orbital inclination, inclined 1.30° compared to Earth. Because the Orbital eccentricity, eccentricity of its orbit is 0.049, Jupiter is slightly over 75 million km nearer the Sun at perihelion than aphelion. The axial tilt of Jupiter is relatively small, only 3.13°, so its seasons are insignificant compared to those of Earth and Mars. Jupiter's Period of revolution, rotation is the fastest of all the Solar System's planets, completing a rotation on its Coordinate axis, axis in slightly less than ten hours; this creates an equatorial bulge easily seen through an amateur telescope. Because Jupiter is not a solid body, its upper atmosphere undergoes differential rotation. The rotation of Jupiter's polar atmosphere is about 5 minutes longer than that of the equatorial atmosphere. The planet is an oblate spheroid, meaning that the diameter across its equator is longer than the diameter measured between its geographic pole, poles. On Jupiter, the equatorial diameter is longer than the polar diameter. Three systems are used as frames of reference for tracking the planetary rotation, particularly when graphing the motion of atmospheric features. System I applies to latitudes from 7° N to 7° S; its period is the planet's shortest, at 9h 50 m 30.0s. System II applies at latitudes north and south of these; its period is 9h 55 m 40.6s. System III was defined by radio astronomers and corresponds to the rotation of the planet's magnetosphere; its period is Jupiter's official rotation.


Observation

Jupiter is usually the List of brightest natural objects in the sky, fourth brightest object in the sky (after the Sun, the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
, and
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never f ...
), although at opposition (astronomy), opposition Mars#Viewing, Mars can appear brighter than Jupiter. Depending on Jupiter's position with respect to the Earth, it can vary in visual magnitude from as bright as −2.94 at opposition down to −1.66 during conjunction (astronomy and astrology), conjunction with the Sun. The mean apparent magnitude is −2.20 with a standard deviation of 0.33. The angular diameter of Jupiter likewise varies from 50.1 to 30.5 arc seconds. Favourable oppositions occur when Jupiter is passing through the Apsis, perihelion of its orbit, bringing it closer to Earth. Near opposition, Jupiter will appear to go into Apparent retrograde motion, retrograde motion for a period of about 121 days, moving backward through an angle of 9.9° before returning to prograde movement. Because the orbit of Jupiter is outside that of Earth, the phase angle (astronomy), phase angle of Jupiter as viewed from Earth is always less than 11.5°; thus, Jupiter always appears nearly fully illuminated when viewed through Earth-based telescopes. It was only during spacecraft missions to Jupiter that crescent views of the planet were obtained. A small telescope will usually show Jupiter's four Galilean moons and the prominent cloud belts across Atmosphere of Jupiter, Jupiter's atmosphere. A larger telescope with an aperture of will show Jupiter's Great Red Spot when it faces Earth.


History


Pre-telescopic research

Observation of Jupiter dates back to at least the Babylonian astronomy, Babylonian astronomers of the 7th or 8th century BC. The ancient Chinese knew Jupiter as the "''Suì'' Star" ( ) and established their cycle of 12 earthly branches based on the approximate number of years it takes Jupiter to rotate around the Sun; the Chinese language still uses its name (simplified characters, simplified as ) when referring to years of age. By the 4th century BC, these observations had developed into the Chinese zodiac, and each year became associated with a Tai Sui Chinese astronomy, star and Chinese gods, god controlling the region of the heavens opposite Jupiter's position in the night sky. These beliefs survive in some Taoist Chinese folk religion, religious practices and in the East Asian zodiac's twelve animals. The Chinese historian Xi Zezong has claimed that Gan De, an ancient Chinese astronomy, Chinese astronomer, reported a small star "in alliance" with the planet, which may indicate a sighting of one of Moons of Jupiter, Jupiter's moons with the unaided eye. If true, this would predate Galileo's discovery by nearly two millennia. A 2016 paper reports that trapezoidal rule was used by Babylonians before 50 BCE for integrating the velocity of Jupiter along the ecliptic. In his 2nd century work the ''Almagest'', the Hellenistic astronomer Claudius Ptolemaeus constructed a geocentric planetary model based on deferents and epicycles to explain Jupiter's motion relative to Earth, giving its orbital period around Earth as 4332.38 days, or 11.86 years.


Ground-based telescope research

In 1610, Italian polymath
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He wa ...
discovered the four largest moons of Jupiter (now known as the Galilean moons) using a telescope. This is thought to be the first telescopic observation of moons other than Earth's. Just one day after Galileo, Simon Marius independently discovered moons around Jupiter, though he did not publish his discovery in a book until 1614. It was Marius's names for the major moons, however, that stuck: Io, Europa, Ganymede, and Callisto. The discovery was a major point in favour of Nicolaus Copernicus, Copernicus' heliocentrism, heliocentric theory of the motions of the planets; Galileo's outspoken support of the Copernican theory led to him being tried and condemned by the Inquisition. During the 1660s, Giovanni Domenico Cassini, Giovanni Cassini used a new telescope to discover spots and colourful bands in Jupiter's atmosphere, observe that the planet appeared oblate, and estimate its rotation period. In 1692, Cassini noticed that the atmosphere undergoes differential rotation. The Great Red Spot may have been observed as early as 1664 by Robert Hooke and in 1665 by Cassini, although this is disputed. The pharmacist Samuel Heinrich Schwabe, Heinrich Schwabe produced the earliest known drawing to show details of the Great Red Spot in 1831. The Red Spot was reportedly lost from sight on several occasions between 1665 and 1708 before becoming quite conspicuous in 1878. It was recorded as fading again in 1883 and at the start of the 20th century. Both Giovanni Alfonso Borelli, Giovanni Borelli and Cassini made careful tables of the motions of Jupiter's moons, which allowed predictions of when the moons would pass before or behind the planet. By the 1670s, Cassini observed that when Jupiter was on the opposite side of the Sun from Earth, these events would occur about 17 minutes later than expected. Ole Rømer deduced that light does not travel instantaneously (a conclusion that Cassini had earlier rejected), and this timing discrepancy was used to estimate the speed of light. In 1892, E. E. Barnard observed a fifth satellite of Jupiter with the refractor at Lick Observatory in California. This moon was later named Amalthea (moon), Amalthea. It was the last planetary moon to be discovered directly by a visual observer through a telescope. An additional eight satellites were discovered before the flyby of the Voyager 1 probe in 1979. In 1932, Rupert Wildt identified absorption bands of ammonia and methane in the spectra of Jupiter. Three long-lived anticyclonic features called "white ovals" were observed in 1938. For several decades they remained as separate features in the atmosphere, sometimes approaching each other but never merging. Finally, two of the ovals merged in 1998, then absorbed the third in 2000, becoming Oval BA.


Space-based telescope research

On July 14, 2022, NASA presented images of Jupiter and related areas captured, for the first time, and including infrared views, by the James Webb Space Telescope (JWST).


Radiotelescope research

In 1955, Bernard Burke and Kenneth Franklin discovered that Jupiter emits bursts of radio waves at a frequency of 22.2 MHz. The period of these bursts matched the rotation of the planet, and they used this information to determine a more precise value for Jupiter's rotation rate. Radio bursts from Jupiter were found to come in two forms: long bursts (or L-bursts) lasting up to several seconds, and short bursts (or S-bursts) lasting less than a hundredth of a second. Scientists have discovered three forms of radio signals transmitted from Jupiter: * Decametric radio bursts (with a wavelength of tens of metres) vary with the rotation of Jupiter, and are influenced by the interaction of Io with Jupiter's magnetic field. * Decimetric radio emission (with wavelengths measured in centimetres) was first observed by Frank Drake and Hein Hvatum in 1959. The origin of this signal is a torus-shaped belt around Jupiter's equator, which generates cyclotron radiation from electrons that are accelerated in Jupiter's magnetic field. * Thermal radiation is produced by heat in the atmosphere of Jupiter.


Exploration

Jupiter has been visited by automated spacecraft since 1973, when the space probe ''
Pioneer 10 ''Pioneer 10'' (originally designated Pioneer F) is an American space probe, launched in 1972 and weighing , that completed the first mission to the planet Jupiter. Thereafter, ''Pioneer 10'' became the first of five artificial objects to ach ...
'' passed close enough to Jupiter to send back revelations about its properties and phenomena. Missions to Jupiter are accomplished at a cost in energy, which is described by the net change in velocity of the spacecraft, or delta-v. Entering a Hohmann transfer orbit from Earth to Jupiter from low Earth orbit requires a delta-v of 6.3 km/s, which is comparable to the 9.7 km/s delta-v needed to reach low Earth orbit. Gravitational slingshot, Gravity assists through planetary Gravitational slingshot, flybys can be used to reduce the energy required to reach Jupiter.


Flyby missions

Beginning in 1973, several spacecraft have performed planetary flyby manoeuvres that brought them within observation range of Jupiter. The
Pioneer Pioneer commonly refers to a settler who migrates to previously uninhabited or sparsely inhabited land. In the United States pioneer commonly refers to an American pioneer, a person in American history who migrated west to join in settling and de ...
missions obtained the first close-up images of Jupiter's atmosphere and several of its moons. They discovered that the radiation fields near the planet were much stronger than expected, but both spacecraft managed to survive in that environment. The trajectories of these spacecraft were used to refine the mass estimates of the Jovian system. Radio occultations by the planet resulted in better measurements of Jupiter's diameter and the amount of polar flattening. Six years later, the Voyager missions vastly improved the understanding of the Galilean moons and discovered Jupiter's rings. They also confirmed that the Great Red Spot was anticyclonic. Comparison of images showed that the Spot had changed hue since the Pioneer missions, turning from orange to dark brown. A torus of ionized atoms was discovered along Io's orbital path, which were found to come from erupting volcanoes on the moon's surface. As the spacecraft passed behind the planet, it observed flashes of lightning in the Terminator (solar), night side atmosphere. The next mission to encounter Jupiter was the ''Ulysses (spacecraft), Ulysses'' solar probe. In February 1992, it performed a flyby manoeuvre to attain a polar orbit around the Sun. During this pass, the spacecraft studied Jupiter's magnetosphere, although it had no cameras to photograph the planet. The spacecraft passed by Jupiter six years later, this time at a much greater distance. In 2000, the ''Cassini'' probe flew by Jupiter on its way to Saturn, and provided higher-resolution images. The '' New Horizons'' probe flew by Jupiter in 2007 for a gravity assist en route to
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Sun. It is the largest ...
. The probe's cameras measured plasma output from volcanoes on Io and studied all four Galilean moons in detail.


''Galileo'' mission

The first spacecraft to orbit Jupiter was the ''Galileo (spacecraft), Galileo'' mission, which reached the planet on December 7, 1995. It remained in orbit for over seven years, conducting multiple flybys of all the Galilean moons and Amalthea (moon), Amalthea. The spacecraft also witnessed the impact of Comet Shoemaker–Levy 9 when it collided with Jupiter in 1994. Some of the goals for the mission were thwarted due to a malfunction in ''Galileos high-gain antenna. A 340-kilogram titanium Galileo (spacecraft)#Galileo entry probe, atmospheric probe was released from the spacecraft in July 1995, entering Jupiter's atmosphere on December 7. It parachuted through of the atmosphere at a speed of about 2,575 km/h (1600 mph) and collected data for 57.6 minutes until the spacecraft was destroyed. The ''Galileo'' orbiter itself experienced a more rapid version of the same fate when it was deliberately steered into the planet on September 21, 2003. NASA destroyed the spacecraft in order to avoid any possibility of the spacecraft crashing into and possibly contaminating the moon Europa, Life on Europa, which may harbour life. Data from this mission revealed that hydrogen composes up to 90% of Jupiter's atmosphere. The recorded temperature was more than 300 °C (570 °F) and the windspeed measured more than 644 km/h (>400 mph) before the probes vaporized.


''Juno'' mission

NASA's ''
Juno Juno commonly refers to: *Juno (mythology), the Roman goddess of marriage and queen of the gods *Juno (film), ''Juno'' (film), 2007 Juno may also refer to: Arts, entertainment and media Fictional characters *Juno, in the film ''Jenny, Juno'' *Ju ...
'' mission arrived at Jupiter on July 4, 2016 with the goal of studying the planet in detail from a polar orbit. The spacecraft was originally intended to orbit Jupiter thirty-seven times over a period of twenty months. During the mission, the spacecraft will be exposed to high levels of radiation from Magnetosphere of Jupiter, Jupiter's magnetosphere, which may cause future failure of certain instruments. On August 27, 2016, the spacecraft completed its first fly-by of Jupiter and sent back the first ever images of Jupiter's north pole. ''Juno'' completed 12 orbits before the end of its budgeted mission plan, ending July 2018. In June of that year, NASA extended the mission operations plan to July 2021, and in January of that year the mission was extended to September 2025 with four lunar flybys: one of Ganymede, one of Europa, and two of Io. When ''Juno'' reaches the end of the mission, it will perform a controlled deorbit and disintegrate into Jupiter's atmosphere. This will avoid the risk of collision with Jupiter's moons.


Cancelled missions and future plans

There is great interest in missions to study Jupiter's larger icy moons, which may have subsurface liquid oceans. Funding difficulties have delayed progress, causing NASA's ''Jupiter Icy Moons Orbiter, JIMO'' (''Jupiter Icy Moons Orbiter'') to be cancelled in 2005. A subsequent proposal was developed for a joint NASA/ESA mission called EJSM/Laplace, with a provisional launch date around 2020. EJSM/Laplace would have consisted of the NASA-led Jupiter Europa Orbiter and the ESA-led Jupiter Ganymede Orbiter. However, the ESA formally ended the partnership in April 2011, citing budget issues at NASA and the consequences on the mission timetable. Instead, ESA planned to go ahead with a European-only mission to compete in its L1 Cosmic Vision selection. These plans have been realized as the European Space Agency's Jupiter Icy Moon Explorer (JUICE), due to launch in 2023, followed by NASA's ''Europa Clipper'' mission, scheduled for launch in 2024. Other proposed missions include the Chinese National Space Administration's ''Tianwen-4'' mission which aims to launch an orbiter to the Jovian system and possibly
Callisto Callisto most commonly refers to: *Callisto (mythology), a nymph *Callisto (moon), a moon of Jupiter Callisto may also refer to: Art and entertainment *''Callisto series'', a sequence of novels by Lin Carter *''Callisto'', a novel by Torsten Kro ...
around 2035, and CNSA's ''Interstellar Express'' and NASA's ''Interstellar Probe (spacecraft), Interstellar Probe'', which would both use Jupiter's gravity to help them reach the edges of the heliosphere.


Moons

Jupiter has 82 known natural satellites. Of these, 66 are less than 10 km in diameter. The four largest moons are Io, Europa, Ganymede, and Callisto, collectively known as the "Galilean moons", and are visible from Earth with binoculars on a clear night.


Galilean moons

The moons discovered by Galileo—Io, Europa, Ganymede, and Callisto—are among the largest in the Solar System. The orbits of Io, Europa, and Ganymede form a pattern known as a Laplace resonance; for every four orbits that Io makes around Jupiter, Europa makes exactly two orbits and Ganymede makes exactly one. This resonance causes the gravitational effects of the three large moons to distort their orbits into elliptical shapes, because each moon receives an extra tug from its neighbours at the same point in every orbit it makes. The tidal force from Jupiter, on the other hand, works to Tidal circularization, circularise their orbits. The Orbital eccentricity, eccentricity of their orbits causes regular flexing of the three moons' shapes, with Jupiter's gravity stretching them out as they approach it and allowing them to spring back to more spherical shapes as they swing away. The friction created by this tidal flexing Tidal acceleration#Tidal heating, generates heat in the interior of the moons. This is seen most dramatically in the Io (moon)#Volcanism, volcanic activity of Io (which is subject to the strongest tidal forces), and to a lesser degree in the geological youth of Europa (moon)#Surface features, Europa's surface, which indicates recent resurfacing of the moon's exterior.


Classification

Jupiter's moons were traditionally classified into four groups of four, based on their similar orbital elements. This picture has been complicated by the discovery of numerous small outer moons since 1999. Jupiter's moons are currently divided into several different groups, although there are several moons which are not part of any group. The eight innermost regular moons, which have nearly circular orbits near the plane of Jupiter's equator, are thought to have formed alongside Jupiter, whilst the remainder are irregular moons and are thought to be Asteroid capture, captured asteroids or fragments of captured asteroids. The irregular moons within each group may have a common origin, perhaps as a larger moon or captured body that broke up.


Interaction with the Solar System

As the most massive of the eight planets, the gravitational influence of Jupiter has helped shape the Solar System. With the exception of Mercury, the orbits of the system's planets lie closer to Jupiter's orbital plane (astronomy), orbital plane than the Sun's celestial equator, equatorial plane. The Kirkwood gaps in the asteroid belt are mostly caused by Jupiter, and the planet may have been responsible for the purported Late Heavy Bombardment in the inner Solar System's history. In addition to its moons, Jupiter's gravitational field controls numerous asteroids that have settled around the Lagrangian points that precede and follow the planet in its orbit around the Sun. These are known as the Trojan asteroids, and are divided into List of Trojan asteroids (Greek camp), Greek and List of Trojan asteroids (Trojan camp), Trojan "camps" to honour the ''Iliad''. The first of these, 588 Achilles, was discovered by Max Wolf in 1906; since then more than two thousand have been discovered. The largest is 624 Hektor. The Jupiter family is defined as comets that have a semi-major axis smaller than Jupiter's; most List of periodic comets, short-period comets belong to this group. Members of the Jupiter family are thought to form in the Kuiper belt outside the orbit of Neptune. During close encounters with Jupiter, they are Perturbation (astronomy), perturbed into orbits with a smaller period, which then becomes circularised by regular gravitational interaction with the Sun and Jupiter.


Impacts

Jupiter has been called the Solar System's Comet Shoemaker–Levy 9#Jupiter as a "cosmic vacuum cleaner", vacuum cleaner because of its immense gravity well and location near the inner Solar System. There are more List of Jupiter events, impacts on Jupiter, such as comets, than on any other planet in the Solar System. For example, Jupiter experiences about 200 times more asteroid and comet impacts than Earth. In the past, scientists believed that Jupiter partially shielded the inner system from cometary bombardment. However, computer simulations in 2008 suggest that Jupiter does not cause a net decrease in the number of comets that pass through the inner Solar System, as its gravity perturbs their orbits inward roughly as often as it Accretion (astrophysics), accretes or ejects them. This topic remains controversial among scientists, as some think it draws comets towards Earth from the Kuiper belt, while others believes that Jupiter protects Earth from the Oort cloud. In July 1994, the Comet Shoemaker–Levy 9 comet collided with Jupiter. The impacts were closely observed by observatories around the world, including the Hubble Space Telescope and ''Galileo'' spacecraft. The event was widely covered by the media. Surveys of early astronomical records and drawings produced eight examples of potential impact observations between 1664 and 1839. However, a 1997 review determined that these observations had little or no possibility of being the results of impacts. Further investigation by this team revealed a dark surface feature discovered by astronomer Giovanni Domenico Cassini, Giovanni Cassini in 1690 may have been an impact scar.


In culture

The planet Jupiter has been known since ancient times. It is visible to the naked eye in the night sky and can occasionally be seen in the daytime when the Sun is low. To the Babylonians, this planet represented their god Marduk, chief of their pantheon from the Hammurabi period. They used Jupiter's roughly 12-year orbit along the ecliptic to define the constellations of their zodiac. The Greek mythology, mythical Greek name for this planet is ''
Zeus Zeus or , , ; grc, Δῐός, ''Diós'', label= genitive Boeotian Aeolic and Laconian grc-dor, Δεύς, Deús ; grc, Δέος, ''Déos'', label= genitive el, Δίας, ''Días'' () is the sky and thunder god in ancient Greek reli ...
'' (Ζεύς), also referred to as ''Dias'' (Δίας), the planetary name of which is retained in modern Greek language, Greek. The ancient Greeks knew the planet as Phaethon ( grc, Φαέθων, label=none), meaning "shining one" or "blazing star". The Greek myths of Zeus from the Homeric period showed particular similarities to certain Near East, Near-Eastern gods, including the Semitic El (deity), El and Baal, the Sumerian Enlil, and the Babylonian god Marduk. The association between the planet and the Greek deity Zeus was drawn from Near Eastern influences and was fully established by the fourth century BCE, as documented in the ''Epinomis'' of Plato and his contemporaries. The god
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth t ...
is the Roman counterpart of Zeus, and he is the principal List of Roman deities, god of Roman mythology. The Romans originally called Jupiter the "star of Jupiter" (''Iuppiter Stella'')," as they believed it to be sacred to its namesake god. This name comes from the Proto-Indo-European language, Proto-Indo-European vocative compound *''Dyēu-pəter'' (nominative: *''Dyeus, Dyēus-pətēr'', meaning "Father Sky-God", or "Father Day-God"). As the supreme god of the Roman pantheon, Jupiter was the god of thunder, lightning, and storms, and appropriately called the god of light and sky. In Jyotisha, Vedic astrology, Hindu astrologers named the planet after Brihaspati, the religious teacher of the gods, and often called it "Guru", which means the "Teacher". In Turkic mythology, Central Asian Turkic myths, Jupiter is called ''Erendiz'' or ''Erentüz'', from ''eren'' (of uncertain meaning) and ''yultuz'' ("star"). The Turks calculated the period of the orbit of Jupiter as 11 years and 300 days. They believed that some social and natural events connected to Erentüz's movements on the sky. The Chinese, Vietnamese, Koreans, and Japanese called it the "wood star" (), based on the Chinese Five elements (Chinese philosophy), Five Elements. In China it became known as the "Year-star" (Sui-sing) as Chinese astronomers noted that it jumped one Chinese zodiac, zodiac constellation each year (with corrections). In some ancient Chinese writings the years were named, at least in principle, in correlation with the Jovian zodiacal signs.


Gallery

File:Gemini North Infrared View of Jupiter.jpg, Infrared view of Jupiter, imaged by the Gemini North telescope in Hawaiʻi on January 11, 2017 File:Hubble Visible View of Jupiter.jpg, Jupiter imaged in visible light by the Hubble Space Telescope on January 11, 2017 File:Hubble Ultraviolet View of Jupiter.jpg, Ultraviolet view of Jupiter, imaged by Hubble on January 11, 2017 File:Hubble's View of Jupiter and Europa in August 2020.jpg, This image of Jupiter and Europa, taken by Hubble on 25 August 2020, was captured when the planet was 653 million kilometres from Earth. File:Jupiter Showcases Auroras, Hazes (NIRCam Closeup) - 52303461859.png, Infrared photo by James Webb Space Telescope captured in August 2022


See also

* * * * * *


Notes


References


External links

* * – A simulation of the 62 moons of Jupiter.
Jupiter in Motion
album of ''Juno'' imagery stitched into short videos
June 2010 impact video

Photographs of Jupiter circa 1920s from the Lick Observatory Records Digital Archive, UC Santa Cruz Library's Digital Collections

Interactive 3D gravity simulation of the Jovian system

Video (animation; 4:00): Flyby of Ganymede and Jupiter
(NASA; 15 July 2021). {{Authority control Jupiter, Articles containing video clips Astronomical objects known since antiquity Gas giants Outer planets