HOME
TheInfoList



Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with
group theory The popular puzzle Rubik's cube invented in 1974 by Ernő Rubik has been used as an illustration of permutation group">Ernő_Rubik.html" ;"title="Rubik's cube invented in 1974 by Ernő Rubik">Rubik's cube invented in 1974 by Ernő Rubik has bee ...
,
complex analysis of the function . Hue represents the argument, brightness the magnitude. Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of com ...
,
non-Euclidean geometry In mathematics Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and calculus, change (mathematical analysis, analysis). I ...
, and on the associations between
geometry Geometry (from the grc, γεωμετρία; ''wikt:γῆ, geo-'' "earth", ''wikt:μέτρον, -metron'' "measurement") is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space that are related ...
and
group theory The popular puzzle Rubik's cube invented in 1974 by Ernő Rubik has been used as an illustration of permutation group">Ernő_Rubik.html" ;"title="Rubik's cube invented in 1974 by Ernő Rubik">Rubik's cube invented in 1974 by Ernő Rubik has bee ...
. His 1872 Erlangen program, classifying geometries by their basic
symmetry group In group theory, the symmetry group of a geometric object is the group (mathematics), group of all Transformation (geometry), transformations under which the object is invariant (mathematics), invariant, endowed with the group operation of Fun ...
s, was an influential synthesis of much of the mathematics of the time.


Life

Felix Klein was born on 25 April 1849 in
Düsseldorf Düsseldorf (, , ; often in English sources; Low Franconian and Ripuarian language, Ripuarian: ''Düsseldörp'' ; archaic nl, Dusseldorp) is the capital city of North Rhine-Westphalia, the most populous state of Germany. It is the second-large ...

Düsseldorf
, to
Prussia Prussia, , Old Prussian: ''Prūsa'' or ''Prūsija'' was a historically prominent Germans, German state that originated in 1525 with Duchy of Prussia, a duchy centered on the Prussia (region), region of Prussia on the southeast coast of the Balt ...
n parents. His father, Caspar Klein (1809–1889), was a Prussian government official's secretary stationed in the
Rhine Province The Rhine Province (german: Rheinprovinz), also known as Rhenish Prussia (''Rheinpreußen'') or synonymous with the Rhineland The Rhineland (german: Rheinland, french: Rhénanie, nl, Rijnland, Latinised name: ''Rhenania'') is the name used ...
. His mother was Sophie Elise Klein (1819–1890,
née__NOTOC__ A birth name is the name of the person given upon their birth. The term may be applied to the surname, the given name or to the entire name. Where births are required to be officially registered, the entire name entered onto a births re ...
Kayser). He attended the Gymnasium in Düsseldorf, then studied mathematics and physics at the
University of Bonn The Rhenish Friedrich Wilhelm University of Bonn (german: Rheinische Friedrich-Wilhelms-Universität Bonn) is a public research university A public university or public college is a university A university ( la, universitas, 'a whole') is ...
, 1865–1866, intending to become a physicist. At that time,
Julius Plücker Julius Plücker (16 June 1801 – 22 May 1868) was a German mathematician A mathematician is someone who uses an extensive knowledge of mathematics Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (n ...

Julius Plücker
had Bonn's professorship of mathematics and experimental physics, but by the time Klein became his assistant, in 1866, Plücker's interest was mainly geometry. Klein received his doctorate, supervised by Plücker, from the University of Bonn in 1868. Plücker died in 1868, leaving his book concerning the basis of
line geometry
line geometry
incomplete. Klein was the obvious person to complete the second part of Plücker's ''Neue Geometrie des Raumes'', and thus became acquainted with Alfred Clebsch, who had relocated to Göttingen in 1868. Klein visited Clebsch the next year, along with visits to
Berlin Berlin (; ) is the Capital city, capital and List of cities in Germany by population, largest city of Germany by both area and population. Its 3,769,495 inhabitants, as of 31 December 2019 makes it the List of cities in the European Union by p ...
and Paris. In July 1870, at the beginning of the
Franco-Prussian War The Franco-Prussian War or Franco-German War,, german: Deutsch-Französischer Krieg often referred to in France as the War of 1870, was a conflict between the Second French Empire (and later, the Third French Republic) and the German states of t ...
, he was in Paris and had to leave the country. For a brief time he served as a medical orderly in the Prussian army before being appointed lecturer at Göttingen in early 1871. University of Erlangen-Nuremberg, Erlangen appointed Klein professor in 1872, when he was only 23 years old. For this, he was endorsed by Clebsch, who regarded him as likely to become the best mathematician of his time. Klein did not wish to remain in Erlangen, where there were very few students, and was pleased to be offered a professorship at the Technical University of Munich, Technische Hochschule München in 1875. There he and Alexander von Brill taught advanced courses to many excellent students, including Adolf Hurwitz, Walther von Dyck, Karl Rohn, Carl Runge, Max Planck, Luigi Bianchi, and Gregorio Ricci-Curbastro. In 1875 Klein married Anne Hegel, granddaughter of the philosopher Georg Wilhelm Friedrich Hegel. After spending five years at the Technische Hochschule, Klein was appointed to a chair of
geometry Geometry (from the grc, γεωμετρία; ''wikt:γῆ, geo-'' "earth", ''wikt:μέτρον, -metron'' "measurement") is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space that are related ...
at Leipzig. There his colleagues included Walther von Dyck, Rohn, Eduard Study and Friedrich Engel (mathematician), Friedrich Engel. Klein's years at Leipzig, 1880 to 1886, fundamentally changed his life. In 1882, his health collapsed; in 1883–1884, he was afflicted with depression. Neverthless, his research continued; his seminal work on hyperelliptic sigma functions, published between 1886 and 1888, dates from around this period. Klein accepted a professorship at the University of Göttingen in 1886. From then on, until his 1913 retirement, he sought to re-establish Göttingen as the world's prime center fo mathematics research. However, he never managed to transfer from Leipzig to Göttingen his own leading role as developer of
geometry Geometry (from the grc, γεωμετρία; ''wikt:γῆ, geo-'' "earth", ''wikt:μέτρον, -metron'' "measurement") is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space that are related ...
. He taught a variety of courses at Göttingen, mainly concerning the interface between mathematics and physics, in particular, mechanics and potential theory. The research facility Klein established at Göttingen served as model for the best such facilities throughout the world. He introduced weekly discussion meetings, and created a mathematical reading room and library. In 1895, Klein recruited David Hilbert from the University of Königsberg. This appointment proved of great importance; Hilbert continued to enhance Göttingen's primacy in mathematics until his own retirement in 1932. Under Klein's editorship, ''Mathematische Annalen'' became one of the best mathematical journals in the world. Founded by Clebsch, it grew under Klein's management, to rival, and eventually surpass ''Crelle's Journal'', based at the University of Berlin. Klein established a small team of editors who met regularly, making decisions in a democratic spirit. The journal first specialized in
complex analysis of the function . Hue represents the argument, brightness the magnitude. Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of com ...
, algebraic geometry, and invariant theory. It also provided an important outlet for real analysis and the new
group theory The popular puzzle Rubik's cube invented in 1974 by Ernő Rubik has been used as an illustration of permutation group">Ernő_Rubik.html" ;"title="Rubik's cube invented in 1974 by Ernő Rubik">Rubik's cube invented in 1974 by Ernő Rubik has bee ...
. In 1893, Klein was a major speaker at the International Mathematical Congress held in Chicago as part of the World's Columbian Exposition. Due partly to Klein's efforts, Göttingen began admitting women in 1893. He supervised the first Ph.D. thesis in mathematics written at Göttingen by a woman, by Grace Chisholm Young, an English student of Arthur Cayley's, whom Klein admired. In 1897 Klein became a foreign member of the Royal Netherlands Academy of Arts and Sciences. Around 1900, Klein began to become interested in mathematical instruction in schools. In 1905, he was instrumental in formulating a plan recommending that analytic geometry, the rudiments of differential and integral calculus, and the Function (mathematics), function concept be taught in secondary schools. This recommendation was gradually implemented in many countries around the world. In 1908, Klein was elected president of the International Commission on Mathematical Instruction at the Rome International Congress of Mathematicians. Under his guidance, the German part of the Commission published many volumes on the teaching of mathematics at all levels in Germany. The London Mathematical Society awarded Klein its De Morgan Medal in 1893. He was elected a member of the Royal Society in 1885, and was awarded its Copley Medal in 1912. He retired the following year due to ill health, but continued to teach mathematics at his home for several further years. Klein was one of ninety-three signatories of the Manifesto of the Ninety-Three, a document penned in support of the German invasion of Belgium in the early stages of World War I. He died in Göttingen in 1925.


Work

Klein's dissertation, on
line geometry
line geometry
and its applications to mechanics, classified second degree line complexes using Weierstrass's theory of elementary divisors. Klein's first important mathematical discoveries were made during 1870. In collaboration with Sophus Lie, he discovered the fundamental properties of the asymptotic lines on the Kummer surface. They later investigated W-curves, curves invariant under a group of projective transformations. It was Lie who introduced Klein to the concept of group, which was to have a major role in his later work. Klein also learned about groups from Camille Jordan. Image:Acme klein bottle.jpg, 150px, A hand-blown Klein Bottle Klein devised the "Klein bottle" named after him, a one-sided closed surface which cannot be embedded in three-dimensional Euclidean space, but it may be immersed as a cylinder looped back through itself to join with its other end from the "inside". It may be embedded in the Euclidean space of dimensions 4 and higher. The concept of a Klein Bottle was devised as a 3-Dimensional Möbius strip, with one method of construction being the attachment of the edges of two Möbius strips. During the 1890s, Klein began studying mathematical physics more intensively, writing on the gyroscope with Arnold Sommerfeld. During 1894, he initiated the idea of an encyclopedia of mathematics including its applications, which became the Klein's Encyclopedia of Mathematical Sciences, ''Encyklopädie der mathematischen Wissenschaften''. This enterprise, which endured until 1935, provided an important standard reference of enduring value.


Erlangen program

In 1871, while at Göttingen, Klein made major discoveries in geometry. He published two papers ''On the So-called Non-Euclidean Geometry'' showing that Euclidean and non-Euclidean geometries could be considered metric spaces determined by a Cayley–Klein metric. This insight had the corollary that
non-Euclidean geometry In mathematics Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and calculus, change (mathematical analysis, analysis). I ...
was consistent if and only if Euclidean geometry was, giving the same status to geometries Euclidean and non-Euclidean, and ending all controversy about non-Euclidean geometry. Arthur Cayley never accepted Klein's argument, believing it to be circular. Klein's synthesis of
geometry Geometry (from the grc, γεωμετρία; ''wikt:γῆ, geo-'' "earth", ''wikt:μέτρον, -metron'' "measurement") is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space that are related ...
as the study of the properties of a space that is invariant under a given transformation group, group of transformations, known as the '' Erlangen program'' (1872), profoundly influenced the evolution of mathematics. This program was initiated by Klein's inaugural lecture as professor at Erlangen, although it was not the actual speech he gave on the occasion. The program proposed a unified system of geometry that has become the accepted modern method. Klein showed how the essential properties of a given geometry could be represented by the group of transformation group, transformations that preserve those properties. Thus the program's definition of geometry encompassed both Euclidean and non-Euclidean geometry. Currently, the significance of Klein's contributions to geometry is evident. They have become so much part of mathematical thinking that it is difficult to appreciate their novelty when first presented, and understand the fact that they were not immediately accepted by all his contemporaries.


Complex analysis

Klein saw his work on
complex analysis of the function . Hue represents the argument, brightness the magnitude. Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of com ...
as his major contribution to mathematics, specifically his work on: *The link between certain ideas of Bernhard Riemann, Riemann and invariant theory, *Number theory and abstract algebra; *Group theory; *Geometry in more than 3 dimensions and differential equations, especially equations he invented, satisfied by elliptic modular functions and automorphic functions. Klein showed that the modular group moves the fundamental region of the complex plane so as to tessellation, tessellate the plane. In 1879, he examined the action of PSL(2,7), considered as an image of the modular group, and obtained an explicit representation of a Riemann surface now termed the Klein quartic. He showed that it was a complex curve in projective space, that its equation was ''x''3''y'' + ''y''3''z'' + ''z''3''x'' = 0, and that its group of symmetry group, symmetries was PSL(2,7) of order (group theory), order 168. His ''Ueber Riemann's Theorie der algebraischen Funktionen und ihre Integrale'' (1882) treats complex analysis in a geometric way, connecting potential theory and conformal mappings. This work drew on notions from fluid dynamics. Klein considered equations of degree > 4, and was especially interested in using transcendental methods to solve the general equation of the fifth degree. Building on methods of Charles Hermite and Leopold Kronecker, he produced similar results to those of Brioschi and later completely solved the problem by means of the icosahedral group. This work enabled him to write a series of papers on elliptic modular functions. In his 1884 book on the icosahedron, Klein established a theory of automorphic functions, associating algebra and geometry. Henri Poincaré, Poincaré had published an outline of his theory of automorphic functions in 1881, which resulted in a friendly rivalry between the two men. Both sought to state and prove a grand uniformization theorem that would establish the new theory more completely. Klein succeeded in formulating such a theorem and in describing a strategy for proving it. Klein summarized his work on automorphic function, automorphic and elliptic modular functions in a four volume treatise, written with Robert Fricke over a period of about 20 years.


Selected works

* 1882: ''Über Riemann's Theorie der Algebraischen Functionen und ihre Integrale'' **
also available from Cornell
* 1884:''Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom 5ten Grade'' ** English translation by G. G. Morrice (1888) ''Lectures on the Ikosahedron; and the Solution of Equations of the Fifth Degree'' via Internet Archive * 1886: ''Über hyperelliptische Sigmafunktionen'' Erster Aufsatz p. 323–356, Mathematische Annalen Bd. 27, * 1888: ''Über hyperelliptische Sigmafunktionen'' Zweiter Aufsatz p. 357–387, Math. Annalen, Bd. 32, * 1894
''Über die hypergeometrische Funktion''
* 1894: ''Über lineare Differentialgleichungen der 2. Ordnung'' * 1897: (with Arnold Sommerfeld) ''Theorie des Kreisels'' (later volumes: 1898, 1903, 1910) * 1890: (with Robert Fricke) ''Vorlesungen über die Theorie der elliptischen Modulfunktionen'' (2 volumes) and 1892) * 1894: ''Evanston Colloquium'' (1893) reported and published by Ziwet (New York, 1894) * Zweiter Band. 1901. * 1901: * * 1897: ''Mathematical Theory of the Top'' (Princeton address, New York) * 1895: ''Vorträge über ausgewählte Fragen der Elementargeometrie'' ** 1897: English translation by W. W. Beman and David Eugene Smith, D. E. Smith
Famous Problems of Elementary Geometry
' via Internet Archive * 1908: ''Elementarmathematik vom höheren Standpunkte aus'' (Leipzig) * 1926: ''Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert'' (2 Bände), Julius Springer Verlag, Berlin & 1927. S
Felix Klein ''Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert''
* 1928: ''Vorlesungen über nichteuklidische Geometrie'', Grundlehren der mathematischen Wissenschaften, Springer Verlag * 1933: ''Vorlesungen über die hypergeometrische Funktion'', Grundlehren der mathematischen Wissenschaften, Springer Verlag


Bibliography

*1887
"The arithmetizing of mathematics"
in Ewald, William B., ed., 1996. ''From Kant to Hilbert: A Source Book in the Foundations of Mathematics'', 2 vols. Oxford Uni. Press: 965–71. *1921. "Felix Klein gesammelte mathematische Abhandlungen" R. Fricke and A. Ostrowski (eds.) Berlin, Springer. 3 volumes. (online copy a
GDZ
* 1890.
Nicht-Euklidische Geometrie


See also

* Dianalytic manifold * j-invariant * Line complex * Ping-pong lemma * W-curve * Felix Klein Protocols * List of things named after Felix Klein


References


Further reading

* David Mumford, Caroline Series, and David Wright ''Indra's Pearls (book), Indra's Pearls: The Vision of Felix Klein''. Cambridge Univ. Press. 2002. * Renate Tobies, Tobies, Renate (with Fritz König) ''Felix Klein''. Teubner Verlag, Leipzig 1981. * David E. Rowe, Rowe, David "Felix Klein, David Hilbert, and the Göttingen Mathematical Tradition", in Science in Germany: The Intersection of Institutional and Intellectual Issues, Kathryn Olesko, ed., Osiris, 5 (1989), 186–213. * Federigo Enriques (1921
L'oeuvre mathematique de Klein
in ''Scientia''.


External links

* * * * *
Felix Klein, Klein Protokolle

Felix Klein (Encyclopædia Britannica)

F. Klein, "On the theory of line complexes of first and second order"

F. Klein, "On line geometry and metric geometry"F. Klein, "On the transformation of the general second-degree equation in line coordinates into canonical coordinates"
{{DEFAULTSORT:Klein, Felix 1849 births 1925 deaths People from Düsseldorf 19th-century German mathematicians 20th-century German mathematicians Differential geometers German military personnel of the Franco-Prussian War Group theorists Members of the Prussian House of Lords People from the Rhine Province Recipients of the Copley Medal University of Bonn alumni Humboldt University of Berlin alumni University of Göttingen faculty University of Erlangen-Nuremberg faculty Technical University of Munich faculty Leipzig University faculty Foreign associates of the National Academy of Sciences Foreign Members of the Royal Society Members of the Royal Netherlands Academy of Arts and Sciences Recipients of the Pour le Mérite (civil class) De Morgan Medallists Prussian Army personnel Mathematicians involved with Mathematische Annalen Scientists from North Rhine-Westphalia