ExxonMobil Electrofrac
   HOME

TheInfoList



OR:

ExxonMobil Electrofrac is an ''
in situ ''In situ'' (; often not italicized in English) is a Latin phrase that translates literally to "on site" or "in position." It can mean "locally", "on site", "on the premises", or "in place" to describe where an event takes place and is used in ...
''
shale oil extraction Shale oil extraction is an industrial process for unconventional oil production. This process converts kerogen in oil shale into shale oil by pyrolysis, hydrogenation, or thermal dissolution. The resultant shale oil is used as fuel oil or up ...
technology proposed by ExxonMobil for converting
kerogen Kerogen is solid, insoluble organic matter in sedimentary rocks. Comprising an estimated 1016 tons of carbon, it is the most abundant source of organic compounds on earth, exceeding the total organic content of living matter 10,000-fold. It ...
in
oil shale Oil shale is an organic-rich fine-grained sedimentary rock containing kerogen (a solid mixture of organic chemical compounds) from which liquid hydrocarbons can be produced. In addition to kerogen, general composition of oil shales constitut ...
to
shale oil Shale oil is an unconventional oil produced from oil shale rock fragments by pyrolysis, hydrogenation, or thermal dissolution. These processes convert the organic matter within the rock (kerogen) into synthetic oil and gas. The resulting oil c ...
.


Technology

ExxonMobil Electrofrac uses a series of fractures created in the oil shale formation. Preferably these fractures should be longitudinal vertical fractures created from horizontal wells and conducting electricity from the heel to the toe of each heating well. For conductivity, an electrically-conductive material such as calcined petroleum coke is injected into the wells in fractures, forming a
heating element A heating element converts electrical energy into heat through the process of Joule heating. Electric current through the element encounters resistance, resulting in heating of the element. Unlike the Peltier effect, this process is indepen ...
. Heating wells are placed in a parallel row with a second horizontal well intersecting them at their toe. This allows opposing electrical charges to be applied at either end. Laboratory experiments have demonstrated that electrical continuity is unaffected by kerogen conversion and that hydrocarbons are expelled from heated oil shale even under ''in situ'' stress. Planar heaters should be used because they require fewer wells than wellbore heaters and offer a reduced surface footprint. The shale oil is extracted by separate dedicated production wells.


See also

* Shell in situ conversion process * Chevron CRUSH


References

{{ExxonMobil Oil shale technology ExxonMobil