Extraterrestrial diamonds
   HOME

TheInfoList



OR:

Although
diamond Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, b ...
s on
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
are rare, extraterrestrial diamonds (diamonds formed outside of Earth) are very common. Diamonds so tiny that they contain only about 2000 carbon atoms are abundant in
meteorite A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or moon. When the original object ...
s and some of them formed in stars before the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
existed. High pressure experiments suggest large amounts of diamonds are formed from
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
on the ice giant planets
Uranus Uranus is the seventh planet from the Sun. Its name is a reference to the Greek god of the sky, Uranus ( Caelus), who, according to Greek mythology, was the great-grandfather of Ares (Mars), grandfather of Zeus (Jupiter) and father of ...
and
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 time ...
, while some planets in other
planetary systems A planetary system is a set of gravitationally bound non- stellar objects in or out of orbit around a star or star system. Generally speaking, systems with one or more planets constitute a planetary system, although such systems may also consi ...
may be almost pure diamond. Diamonds are also found in stars and may have been the first
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2 ...
ever to have formed.


Meteorites

In 1987, a team of scientists examined some primitive
meteorite A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or moon. When the original object ...
s and found grains of diamond about 2.5 nanometers in diameter ( nanodiamonds). Trapped in them were
noble gas The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low ch ...
es whose isotopic signature indicated they came from outside the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
. Analyses of additional primitive meteorites also found nanodiamonds. The record of their origins was preserved despite a long and violent history that started when they were ejected from a star into the
interstellar medium In astronomy, the interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstella ...
, went through the
formation of the Solar System The formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a ...
, were incorporated into a planetary body that was later broken up into meteorites, and finally crashed on the Earth's surface. In meteorites, nanodiamonds make up about 3 percent of the carbon and 400 parts per million of the mass. Grains of
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder and crystal s ...
and
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on la ...
also have anomalous isotopic patterns. Collectively they are known as '' presolar grains'' or ''stardust'' and their properties constrain models of
nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
in
giant star A giant star is a star with substantially larger radius and luminosity than a main-sequence (or ''dwarf'') star of the same surface temperature.Giant star, entry in ''Astronomy Encyclopedia'', ed. Patrick Moore, New York: Oxford University Press ...
s and
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
e. It is unclear how many nanodiamonds in meteorites are really from outside the Solar System. Only a very small fraction of them contain noble gases of presolar origin and until recently it was not possible to study them individually. On average, the ratio of
carbon-12 Carbon-12 (12C) is the most abundant of the two stable isotopes of carbon ( carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon- ...
to
carbon-13 Carbon-13 (13C) is a natural, stable isotope of carbon with a nucleus containing six protons and seven neutrons. As one of the environmental isotopes, it makes up about 1.1% of all natural carbon on Earth. Detection by mass spectrometry A mas ...
matches that of the
Earth's atmosphere The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing fo ...
while that of
nitrogen-14 Natural nitrogen (7N) consists of two stable isotopes: the vast majority (99.6%) of naturally occurring nitrogen is nitrogen-14, with the remainder being nitrogen-15. Fourteen radioisotopes are also known, with atomic masses ranging from 10 to 2 ...
to
nitrogen-15 Natural nitrogen (7N) consists of two stable isotopes: the vast majority (99.6%) of naturally occurring nitrogen is nitrogen-14, with the remainder being nitrogen-15. Fourteen radioisotopes are also known, with atomic masses ranging from 10 to 25, ...
matches the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
. Techniques such as atom probe tomography will make it possible to examine individual grains, but due to the limited number of atoms, the isotopic resolution is limited. If most nanodiamonds did form in the Solar System, that raises the question of how this is possible. On the surface of
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
,
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on la ...
is the stable carbon mineral while larger diamonds can only be formed in the kind of temperatures and pressures that are found deep in the
mantle A mantle is a piece of clothing, a type of cloak. Several other meanings are derived from that. Mantle may refer to: *Mantle (clothing), a cloak-like garment worn mainly by women as fashionable outerwear **Mantle (vesture), an Eastern Orthodox ve ...
. However, nanodiamonds are close to molecular size: one with a diameter of 2.8 nm, the median size, contains about 1800 carbon atoms. In very small minerals,
surface energy In surface science, surface free energy (also interfacial free energy or surface energy) quantifies the disruption of intermolecular bonds that occurs when a surface is created. In solid-state physics, surfaces must be intrinsically less ener ...
is important and diamonds are more stable than graphite because the diamond structure is more compact. The crossover in stability is between 1 and 5 nm. At even smaller sizes, a variety of other forms of carbon such as
fullerene A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
s can be found as well as diamond cores wrapped in fullerenes. The most carbon-rich meteorites, with abundances up to 7 parts per thousand by weight, are ureilites. These have no known parent body and their origin is controversial. Diamonds are common in highly shocked ureilites, and most are thought to have been formed by either the shock of the impact with Earth or with other bodies in space. However, much larger diamonds were found in fragments of a meteorite called Almahata Sitta, found in the
Nubian desert The Nubian Desert ( ar, صحراء النوبة, ''Şaḩrā’ an Nūbyah'') is in the eastern region of the Sahara Desert, spanning approximately 400,000 km2 of northeastern Sudan and northern Eritrea, between the Nile and the Red Sea ...
of
Sudan Sudan ( or ; ar, السودان, as-Sūdān, officially the Republic of the Sudan ( ar, جمهورية السودان, link=no, Jumhūriyyat as-Sūdān), is a country in Northeast Africa. It shares borders with the Central African Republic t ...
. They contained inclusions of iron- and sulfur-bearing minerals, the first inclusions to be found in extraterrestrial diamonds. They were dated at 4.5 billion-year-old crystals and were formed at pressures greater than 20 gigapascals. The authors of a 2018 study concluded that they must have come from a protoplanet, no longer intact, with a size between that of the moon and Mars. Infrared emissions from space, observed by the Infrared Space Observatory and the
Spitzer Space Telescope The Spitzer Space Telescope, formerly the Space Infrared Telescope Facility (SIRTF), was an infrared space telescope launched in 2003. Operations ended on 30 January 2020. Spitzer was the third space telescope dedicated to infrared astronomy, ...
, has made it clear that carbon-containing molecules are ubiquitous in space. These include
polycyclic aromatic hydrocarbon A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings and the three-ring compounds anthracene and phenanthrene. ...
s (PAHs), fullerenes and diamondoids (hydrocarbons that have the same crystal structure as diamond). If dust in space has a similar concentration, a gram of it would carry up to 10 quadrillion of them, but so far there is little evidence for their presence in the interstellar medium; they are difficult to tell apart from diamondoids. A 2014 study led by James Kennett at the University of California Santa Barbara identified a thin layer of diamonds spread over three continents. This lent support to a contentious hypothesis that a collision of a large comet with the Earth about 13,000 years ago caused the extinction of
megafauna In terrestrial zoology, the megafauna (from Greek μέγας ''megas'' "large" and New Latin ''fauna'' "animal life") comprises the large or giant animals of an area, habitat, or geological period, extinct and/or extant. The most common thresho ...
in
North America North America is a continent in the Northern Hemisphere and almost entirely within the Western Hemisphere. It is bordered to the north by the Arctic Ocean, to the east by the Atlantic Ocean, to the southeast by South America and th ...
and put an end to the
Clovis culture The Clovis culture is a prehistoric Paleoamerican culture, named for distinct stone and bone tools found in close association with Pleistocene fauna, particularly two mammoths, at Blackwater Locality No. 1 near Clovis, New Mexico, in 1936 a ...
during the Younger Dryas period. The reported nanodiamond data are considered by some as the strongest physical evidence for a Younger Dryas impact/bolide event. However that study was severely flawed and was based on questionable and unreliable methods to measure nanodiamond abundances in the sediments. Furthermore, most of the reported 'nanodiamonds' at the Younger Dryas boundary are not diamond at all, but rather reported as the controversial 'n-diamond'. The use of 'n-diamond' as an impact marker, is problematic due to the presence of native Cu nanocrystals in sediments that can be easily confused for 'n-diamond', should that controversial carbon phase even exist.


Planets


Solar System

In 1981, Marvin Ross wrote a paper titled "The ice layer in Uranus and Neptune—diamonds in the sky?" in which he proposed that huge quantities of diamonds might be found in the interior of these planets. At Lawrence Livermore, he had analyzed data from shock-wave compression of
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
(CH4) and found that the extreme pressure separated the carbon atom from the hydrogen, freeing it to form diamond. Theoretical modeling by Sandro Scandolo and others predicted that diamonds would form at pressures over 300 giga
pascal Pascal, Pascal's or PASCAL may refer to: People and fictional characters * Pascal (given name), including a list of people with the name * Pascal (surname), including a list of people and fictional characters with the name ** Blaise Pascal, Frenc ...
s (GPa), but even at lower pressures methane would be disrupted and form chains of hydrocarbons. High pressure experiments at the University of California Berkeley using a
diamond anvil cell A diamond anvil cell (DAC) is a high-pressure device used in geology, engineering, and materials science experiments. It enables the compression of a small (sub-millimeter-sized) piece of material to extreme pressures, typically up to around 1 ...
found both phenomena at only 50 GPa and a temperature of 2500 kelvins, equivalent to depths of 7000 kilometers below Neptune's cloud tops. Another experiment at the Geophysical Laboratory saw methane becoming unstable at only 7 GPa and 2000 kelvins. After forming, denser diamonds would sink. This "diamond rain" would convert
potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potenti ...
into
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
and help drive the
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the c ...
that generates Neptune's magnetic field. There are some uncertainties in how well the experimental results apply to Uranus and Neptune. Water and hydrogen mixed with the methane may alter the chemical reactions. A physicist at the
Fritz Haber Institute The Fritz Haber Institute of the Max Planck Society (FHI) is a science research institute located at the heart of the academic district of Dahlem, in Berlin, Germany. The original Kaiser Wilhelm Institute for Physical Chemistry and Electroch ...
in
Berlin Berlin ( , ) is the capital and largest city of Germany by both area and population. Its 3.7 million inhabitants make it the European Union's most populous city, according to population within city limits. One of Germany's sixteen constitu ...
showed that the carbon on these planets is not concentrated enough to form diamonds from scratch. A proposal that diamonds may also form in Jupiter and Saturn, where the concentration of carbon is far lower, was considered unlikely because the diamonds would quickly dissolve. Experiments looking for conversion of methane to diamonds found weak signals and did not reach the temperatures and pressures expected in Uranus and Neptune. However, a recent experiment used shock heating by lasers to reach temperatures and pressures expected at a depth of 10,000 kilometers below the surface of Uranus. When they did this to
polystyrene Polystyrene (PS) is a synthetic polymer made from monomers of the Aromatic hydrocarbon, aromatic hydrocarbon styrene. Polystyrene can be solid or foamed. General-purpose polystyrene is clear, hard, and brittle. It is an inexpensive resin pe ...
, nearly every carbon atom in the material was incorporated into diamond crystals within a nanosecond.


Extrasolar

In the Solar System the rocky planets Mercury, Venus, Earth and Mars are 70% to 90% silicates by mass. By contrast, stars with a high ratio of carbon to oxygen may be orbited by planets that are mostly carbides, with the most common material being
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder and crystal s ...
. This has a higher thermal conductivity and a lower thermal expansivity than silicates. This would result in more rapid conductive cooling near the surface, but lower down the convection could be at least as vigorous as that in silicate planets. One such planet is
PSR J1719-1438 b PSR may refer to: Organizations * Pacific School of Religion, Berkeley, California, US * Palestinian Center for Policy and Survey Research * Physicians for Social Responsibility, US ;Political parties: * Revolutionary Socialist Party (Portuga ...
, companion to a millisecond pulsar. It has a density at least twice that of
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
, and may be composed mainly of ultra-dense diamond. It is believed to be the remnant of a
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
after the pulsar stripped away more than 99 percent of its mass. Another planet, 55 Cancri e, has been called a "super-Earth" because, like Earth, it is a rocky planet orbiting a sun-like star, but it has twice the radius and eight times the mass. The researchers who discovered it in 2012 concluded that it was carbon-rich, making an abundance of diamond likely. However, later analyses using multiple measures for the star's chemical composition indicated that the star has 25 percent more oxygen than carbon. This makes it less likely that the planet itself is a carbon planet.


Stars

It has been proposed that diamonds exist in carbon-rich stars, particularly white dwarfs;
Carbonado Carbonado, commonly known as black diamond, is one of the toughest forms of natural diamond. It is an impure, high-density, micro-porous form of polycrystalline diamond consisting of diamond, graphite, and amorphous carbon, with minor crysta ...
, a
polycrystalline A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains. Bacillite is a type of crystallite. It is rodlike with parallel longulites. Stru ...
mix of diamond, graphite, and
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal. Etymology The term comes from the Greek language, Gr ...
carbon, which is one of the hardest natural forms of carbon, is also present, and could come from
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
e and
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
s. The white dwarf BPM 37093, is located away in the constellation
Centaurus Centaurus is a bright constellation in the southern sky. One of the largest constellations, Centaurus was included among the 48 constellations listed by the 2nd-century astronomer Ptolemy, and it remains one of the 88 modern constellations. ...
, has a diameter of 2,500-miles (4,000 km), and may have a diamond core, which would make it one of the largest diamonds in the universe. For this reason it was given the nickname ''Lucy''. In 2008, Robert Hazen and colleagues at the Carnegie Institution in Washington, D.C. published a paper, "Mineral evolution", in which they explored the history of mineral formation and found that the diversity of minerals has changed over time as the conditions have changed. Before the Solar System formed, only a small number of minerals were present, including diamonds and
olivine The mineral olivine () is a magnesium iron silicate with the chemical formula . It is a type of nesosilicate or orthosilicate. The primary component of the Earth's upper mantle, it is a common mineral in Earth's subsurface, but weathers qui ...
. The first minerals may have been small diamonds formed in stars because stars are rich in carbon and diamonds form at a higher temperature than any other known mineral.


See also

*
Extraterrestrial materials Extraterrestrial material refers to natural objects now on Earth that originated in outer space. Such materials include cosmic dust and meteorites, as well as samples brought to Earth by sample return missions from the Moon, asteroids and com ...


References

{{Use dmy dates, date=February 2018 Diamond Meteorite mineralogy and petrology Planetary geology