Extracellular matrix
   HOME

TheInfoList



OR:

In
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
, the extracellular matrix (ECM), also called intercellular matrix, is a three-dimensional network consisting of extracellular macromolecules and minerals, such as collagen,
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s, glycoproteins and hydroxyapatite that provide structural and biochemical support to surrounding cells. Because
multicellularity A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially uni- ...
evolved independently in different multicellular lineages, the composition of ECM varies between multicellular structures; however, cell adhesion, cell-to-cell communication and differentiation are common functions of the ECM. The animal extracellular matrix includes the interstitial matrix and the basement membrane. Interstitial matrix is present between various animal cells (i.e., in the intercellular spaces). Gels of polysaccharides and fibrous proteins fill the interstitial space and act as a compression buffer against the stress placed on the ECM. Basement membranes are sheet-like depositions of ECM on which various epithelial cells rest. Each type of connective tissue in animals has a type of ECM: collagen fibers and
bone mineral Bone mineral (also called inorganic bone phase, bone salt, or bone apatite) is the inorganic component of bone tissue. It gives bones their compressive strength. Bone mineral is formed predominantly from carbonated hydroxyapatite with lower cry ...
comprise the ECM of
bone tissue A bone is a rigid organ that constitutes part of the skeleton in most vertebrate animals. Bones protect the various other organs of the body, produce red and white blood cells, store minerals, provide structure and support for the body, a ...
;
reticular fibers Reticular fibers, reticular fibres or reticulin is a type of fiber in connective tissue composed of type III collagen secreted by reticular cells. Reticular fibers crosslink to form a fine meshwork (reticulin). This network acts as a supportin ...
and
ground substance Ground substance is an amorphous gel-like substance in the extracellular space that contains all components of the extracellular matrix (ECM) except for fibrous materials such as collagen and elastin. Ground substance is active in the development, m ...
comprise the ECM of
loose connective tissue Loose connective tissue, sometimes called areolar tissue, is a cellular connective tissue with thin and relatively sparse collagen fibers. Its ground substance occupies more volume than the fibers do. It has a viscous to gel-like consisten ...
; and blood plasma is the ECM of blood. The plant ECM includes cell wall components, like cellulose, in addition to more complex signaling molecules. Some single-celled organisms adopt multicellular
biofilms A biofilm comprises any syntrophic consortium of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular po ...
in which the cells are embedded in an ECM composed primarily of extracellular polymeric substances (EPS).


Structure

Components of the ECM are produced intracellularly by resident cells and secreted into the ECM via exocytosis. Once secreted, they then aggregate with the existing matrix. The ECM is composed of an interlocking mesh of fibrous
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s and glycosaminoglycans (GAGs).


Proteoglycans

Glycosaminoglycans (GAGs) are
carbohydrate In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may or m ...
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
s and mostly attached to extracellular matrix proteins to form proteoglycans (hyaluronic acid is a notable exception; see below). Proteoglycans have a net negative charge that attracts positively charged sodium ions (Na+), which attracts water molecules via osmosis, keeping the ECM and resident cells hydrated. Proteoglycans may also help to trap and store
growth factors A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for reg ...
within the ECM. Described below are the different types of proteoglycan found within the extracellular matrix.


Heparan sulfate

Heparan sulfate Heparan sulfate (HS) is a linear polysaccharide found in all animal tissues. It occurs as a proteoglycan (HSPG, i.e. Heparan Sulfate ProteoGlycan) in which two or three HS chains are attached in close proximity to cell surface or extracellular ma ...
(HS) is a linear polysaccharide found in all animal tissues. It occurs as a proteoglycan (PG) in which two or three HS chains are attached in close proximity to cell surface or ECM proteins. It is in this form that HS binds to a variety of protein
ligand In coordination chemistry, a ligand is an ion or molecule ( functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elec ...
s and regulates a wide variety of biological activities, including developmental processes, angiogenesis, blood coagulation, and tumour
metastasis Metastasis is a pathogenic agent's spread from an initial or primary site to a different or secondary site within the host's body; the term is typically used when referring to metastasis by a cancerous tumor. The newly pathological sites, then ...
. In the extracellular matrix, especially basement membranes, the multi-domain proteins perlecan,
agrin Agrin is a large proteoglycan whose best-characterised role is in the development of the neuromuscular junction during embryogenesis. Agrin is named based on its involvement in the aggregation of acetylcholine receptors during synaptogenesis. ...
, and collagen XVIII are the main proteins to which heparan sulfate is attached.


Chondroitin sulfate

Chondroitin sulfates contribute to the tensile strength of cartilage,
tendon A tendon or sinew is a tough, high-tensile-strength band of dense fibrous connective tissue that connects muscle to bone. It is able to transmit the mechanical forces of muscle contraction to the skeletal system without sacrificing its ability ...
s, ligaments, and walls of the
aorta The aorta ( ) is the main and largest artery in the human body, originating from the left ventricle of the heart and extending down to the abdomen, where it splits into two smaller arteries (the common iliac arteries). The aorta distributes o ...
. They have also been known to affect
neuroplasticity Neuroplasticity, also known as neural plasticity, or brain plasticity, is the ability of neural networks in the brain to change through growth and reorganization. It is when the brain is rewired to function in some way that differs from how it p ...
.


Keratan sulfate

Keratan sulfates have a variable sulfate content and, unlike many other GAGs, do not contain
uronic acid 300px, The Fischer projections of glucose and glucuronic acid">glucose.html" ;"title="Fischer projections of glucose">Fischer projections of glucose and glucuronic acid. Glucose's terminal carbon's primary alcohol group has been oxidized to a ...
. They are present in the cornea, cartilage,
bone A bone is a rigid organ that constitutes part of the skeleton in most vertebrate animals. Bones protect the various other organs of the body, produce red and white blood cells, store minerals, provide structure and support for the body, ...
s, and the
horns Horns or The Horns may refer to: * Plural of Horn (instrument), a group of musical instruments all with a horn-shaped bells * The Horns (Colorado), a summit on Cheyenne Mountain * ''Horns'' (novel), a dark fantasy novel written in 2010 by Joe Hill ...
of
animal Animals are multicellular, eukaryotic organisms in the Kingdom (biology), biological kingdom Animalia. With few exceptions, animals Heterotroph, consume organic material, Cellular respiration#Aerobic respiration, breathe oxygen, are Motilit ...
s.


Non-proteoglycan polysaccharide


Hyaluronic acid

Hyaluronic acid (or "hyaluronan") is a polysaccharide consisting of alternating residues of D-glucuronic acid and N-acetylglucosamine, and unlike other GAGs, is not found as a proteoglycan. Hyaluronic acid in the extracellular space confers upon tissues the ability to resist compression by providing a counteracting
turgor Turgor pressure is the force within the cell that pushes the plasma membrane against the cell wall. It is also called ''hydrostatic pressure'', and is defined as the pressure in a fluid measured at a certain point within itself when at equilibri ...
(swelling) force by absorbing significant amounts of water. Hyaluronic acid is thus found in abundance in the ECM of load-bearing joints. It is also a chief component of the interstitial gel. Hyaluronic acid is found on the inner surface of the cell membrane and is translocated out of the cell during biosynthesis. Hyaluronic acid acts as an environmental cue that regulates cell behavior during embryonic development, healing processes,
inflammation Inflammation (from la, inflammatio) is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants, and is a protective response involving immune cells, blood vessels, and molec ...
, and
tumor A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
development. It interacts with a specific transmembrane receptor,
CD44 The CD44 antigen is a cell-surface glycoprotein involved in cell–cell interactions, cell adhesion and migration. In humans, the CD44 antigen is encoded by the ''CD44'' gene on chromosome 11. CD44 has been referred to as HCAM (homing cell adhes ...
.


Proteins


Collagen

Collagens are the most abundant protein in the ECM. In fact, collagen is the most abundant protein in the human body and accounts for 90% of bone matrix protein content. Collagens are present in the ECM as fibrillar proteins and give structural support to resident cells. Collagen is exocytosed in precursor form (
procollagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole ...
), which is then cleaved by procollagen proteases to allow extracellular assembly. Disorders such as Ehlers Danlos Syndrome,
osteogenesis imperfecta Osteogenesis imperfecta (; OI), colloquially known as brittle bone disease, is a group of genetic disorders that all result in bones that break easily. The range of symptoms—on the skeleton as well as on the body's other organs—may b ...
, and
epidermolysis bullosa Epidermolysis bullosa (EB) is a group of rare medical conditions that result in easy blistering of the skin and mucous membranes. Blisters occur with minor trauma or friction and are painful. Its severity can range from mild to fatal. Inherited E ...
are linked with genetic defects in collagen-encoding
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
s. The collagen can be divided into several families according to the types of structure they form: # Fibrillar (Type I, II, III, V, XI) # Facit (Type IX, XII, XIV) # Short chain (Type VIII, X) # Basement membrane (Type IV) # Other (Type VI, VII, XIII)


Elastin

Elastins, in contrast to collagens, give elasticity to tissues, allowing them to stretch when needed and then return to their original state. This is useful in blood vessels, the
lungs The lungs are the primary organs of the respiratory system in humans and most other animals, including some snails and a small number of fish. In mammals and most other vertebrates, two lungs are located near the backbone on either side ...
, in skin, and the
ligamentum nuchae The nuchal ligament is a ligament at the back of the neck that is continuous with the supraspinous ligament. Structure The nuchal ligament extends from the external occipital protuberance on the skull and median nuchal line to the spinous proc ...
, and these tissues contain high amounts of elastins. Elastins are synthesized by fibroblasts and smooth muscle cells. Elastins are highly insoluble, and tropoelastins are secreted inside a chaperone molecule, which releases the precursor molecule upon contact with a fiber of mature elastin. Tropoelastins are then deaminated to become incorporated into the elastin strand. Disorders such as
cutis laxa Cutis laxa or pachydermatocele is a group of rare connective tissue disorders in which the skin becomes inelastic and hangs loosely in folds. Signs and symptoms It is characterised by skin that is loose, hanging, wrinkled, and lacking in elast ...
and
Williams syndrome Williams syndrome (WS) is a genetic disorder that affects many parts of the body. Facial features frequently include a broad forehead, underdeveloped chin, short nose, and full cheeks. Mild to moderate intellectual disability is observed in people ...
are associated with deficient or absent elastin fibers in the ECM.


Extracellular vesicles

In 2016, Huleihel et al., reported the presence of DNA, RNA, and Matrix-bound nanovesicles (MBVs) within ECM bioscaffolds. MBVs shape and size were found to be consistent with previously described exosomes. MBVs cargo includes different protein molecules, lipids, DNA, fragments, and miRNAs. Similar to ECM bioscaffolds, MBVs can modify the activation state of macrophages and alter different cellular properties such as; proliferation, migration and cell cycle. MBVs are now believed to be an integral and functional key component of ECM bioscaffolds.


Cell adhesion proteins


Fibronectin

Fibronectins are
glycoproteins Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycosy ...
that connect cells with collagen fibers in the ECM, allowing cells to move through the ECM. Fibronectins bind collagen and cell-surface integrins, causing a reorganization of the cell's
cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is com ...
to facilitate cell movement. Fibronectins are secreted by cells in an unfolded, inactive form. Binding to integrins unfolds fibronectin molecules, allowing them to form dimers so that they can function properly. Fibronectins also help at the site of tissue injury by binding to
platelet Platelets, also called thrombocytes (from Greek θρόμβος, "clot" and κύτος, "cell"), are a component of blood whose function (along with the coagulation factors) is to react to bleeding from blood vessel injury by clumping, thereby i ...
s during blood clotting and facilitating cell movement to the affected area during wound healing.


Laminin

Laminin Laminins are a family of glycoproteins of the extracellular matrix of all animals. They are major components of the basal lamina (one of the layers of the basement membrane), the protein network foundation for most cells and organs. The laminins ...
s are proteins found in the basal laminae of virtually all animals. Rather than forming collagen-like fibers, laminins form networks of web-like structures that resist tensile forces in the basal lamina. They also assist in cell adhesion. Laminins bind other ECM components such as collagens and nidogens.


Development

There are many cell types that contribute to the development of the various types of extracellular matrix found in the plethora of tissue types. The local components of ECM determine the properties of the connective tissue. Fibroblasts are the most common cell type in connective tissue ECM, in which they synthesize, maintain, and provide a structural framework; fibroblasts secrete the precursor components of the ECM, including the
ground substance Ground substance is an amorphous gel-like substance in the extracellular space that contains all components of the extracellular matrix (ECM) except for fibrous materials such as collagen and elastin. Ground substance is active in the development, m ...
. Chondrocytes are found in cartilage and produce the cartilaginous matrix. Osteoblasts are responsible for bone formation.


Physiology


Stiffness and elasticity

The ECM can exist in varying degrees of stiffness and elasticity, from soft brain tissues to hard bone tissues. The elasticity of the ECM can differ by several orders of magnitude. This property is primarily dependent on collagen and elastin concentrations, and it has recently been shown to play an influential role in regulating numerous cell functions. Cells can sense the mechanical properties of their environment by applying forces and measuring the resulting backlash. This plays an important role because it helps regulate many important cellular processes including cellular contraction, cell migration, cell proliferation, differentiation and cell death ( apoptosis). Inhibition of nonmuscle
myosin II Myosins () are a superfamily of motor proteins best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are ATP-dependent and responsible for actin-based motility. The first myosin (M2 ...
blocks most of these effects, indicating that they are indeed tied to sensing the mechanical properties of the ECM, which has become a new focus in research during the past decade.


Effect on gene expression

Differing mechanical properties in ECM exert effects on both cell behaviour and gene expression. Although the mechanism by which this is done has not been thoroughly explained, adhesion complexes and the actin- myosin
cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is com ...
, whose contractile forces are transmitted through transcellular structures are thought to play key roles in the yet to be discovered molecular pathways.


Effect on differentiation

ECM elasticity can direct cellular differentiation, the process by which a cell changes from one cell type to another. In particular, naive mesenchymal stem cells (MSCs) have been shown to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity. MSCs placed on soft matrices that mimic brain differentiate into
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. ...
-like cells, showing similar shape,
RNAi RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression by double-stranded RNA, through translational or transcriptional repression. Historically, RNAi was known by ...
profiles, cytoskeletal markers, and transcription factor levels. Similarly stiffer matrices that mimic muscle are myogenic, and matrices with stiffnesses that mimic collagenous bone are osteogenic.


Durotaxis

Stiffness and elasticity also guide cell migration, this process is called durotaxis. The term was coined by Lo CM and colleagues when they discovered the tendency of single cells to migrate up rigidity gradients (towards more stiff substrates) and has been extensively studied since. The molecular mechanisms behind durotaxis are thought to exist primarily in the
focal adhesion In cell biology, focal adhesions (also cell–matrix adhesions or FAs) are large macromolecular assemblies through which mechanical force and regulatory signals are transmitted between the extracellular matrix (ECM) and an interacting cell. More ...
, a large protein complex that acts as the primary site of contact between the cell and the ECM. This complex contains many proteins that are essential to durotaxis including structural anchoring proteins (
integrins Integrins are transmembrane receptors that facilitate cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, ...
) and signaling proteins (adhesion kinase ( FAK), talin,
vinculin In mammalian cells, vinculin is a membrane-cytoskeletal protein in focal adhesion plaques that is involved in linkage of integrin adhesion molecules to the actin cytoskeleton. Vinculin is a cytoskeletal protein associated with cell-cell and cel ...
,
paxillin Paxillin is a protein that in humans is encoded by the ''PXN'' gene. Paxillin is expressed at focal adhesions of non-striated cells and at costameres of striated muscle cells, and it functions to adhere cells to the extracellular matrix. Mutation ...
,
α-actinin Actinin is a microfilament protein. Alpha-actinin-1 is necessary for the attachment of actin myofilaments to the Sarcomere, Z-lines in Skeletal muscle, skeletal muscle cells, and to the Smooth muscle tissue, dense bodies in smooth muscle cells. The ...
, GTPases etc.) which cause changes in cell shape and actomyosin contractility. These changes are thought to cause cytoskeletal rearrangements in order to facilitate directional
migration Migration, migratory, or migrate may refer to: Human migration * Human migration, physical movement by humans from one region to another ** International migration, when peoples cross state boundaries and stay in the host state for some minimum le ...
.


Function

Due to its diverse nature and composition, the ECM can serve many functions, such as providing support, segregating tissues from one another, and regulating intercellular communication. The extracellular matrix regulates a cell's dynamic behavior. In addition, it sequesters a wide range of cellular
growth factor A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for regul ...
s and acts as a local store for them. Changes in physiological conditions can trigger protease activities that cause local release of such stores. This allows the rapid and local growth factor-mediated activation of cellular functions without '' de novo'' synthesis. Formation of the extracellular matrix is essential for processes like growth,
wound healing Wound healing refers to a living organism's replacement of destroyed or damaged tissue by newly produced tissue. In undamaged skin, the epidermis (surface, epithelial layer) and dermis (deeper, connective layer) form a protective barrier again ...
, and
fibrosis Fibrosis, also known as fibrotic scarring, is a pathological wound healing in which connective tissue replaces normal parenchymal tissue to the extent that it goes unchecked, leading to considerable tissue remodelling and the formation of perma ...
. An understanding of ECM structure and composition also helps in comprehending the complex dynamics of
tumor A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
invasion and
metastasis Metastasis is a pathogenic agent's spread from an initial or primary site to a different or secondary site within the host's body; the term is typically used when referring to metastasis by a cancerous tumor. The newly pathological sites, then ...
in
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
biology as metastasis often involves the destruction of extracellular matrix by enzymes such as
serine protease Serine proteases (or serine endopeptidases) are enzymes that cleave peptide bonds in proteins. Serine serves as the nucleophilic amino acid at the (enzyme's) active site. They are found ubiquitously in both eukaryotes and prokaryotes. Seri ...
s,
threonine protease Threonine proteases are a family of proteolytic enzymes harbouring a threonine (Thr) residue within the active site. The prototype members of this class of enzymes are the catalytic subunits of the proteasome, however the acyltransferases conver ...
s, and matrix metalloproteinases. The stiffness and elasticity of the ECM has important implications in cell migration, gene expression, and differentiation. Cells actively sense ECM rigidity and migrate preferentially towards stiffer surfaces in a phenomenon called durotaxis. They also detect elasticity and adjust their gene expression accordingly which has increasingly become a subject of research because of its impact on differentiation and cancer progression. In the brain, where hyaluronan is the main ECM component, the matrix display both structural and signaling properties. High-molecular weight hyaluronan acts as a diffusional barrier that can modulate diffusion in the extracellular space locally. Upon matrix degradation, hyaluronan fragments are released to the extracellular space, where they function as pro-inflammatory molecules, orchestrating the response of immune cells such as microglia.


Cell adhesion

Many cells bind to components of the extracellular matrix. Cell adhesion can occur in two ways; by
focal adhesions In cell biology, focal adhesions (also cell–matrix adhesions or FAs) are large macromolecular assemblies through which mechanical force and regulatory signals are transmitted between the extracellular matrix (ECM) and an interacting cell. More ...
, connecting the ECM to actin filaments of the cell, and
hemidesmosomes Hemidesmosomes are very small stud-like structures found in keratinocytes of the epidermis of skin that attach to the extracellular matrix. They are similar in form to desmosomes when visualized by electron microscopy, however, desmosomes attach t ...
, connecting the ECM to intermediate filaments such as
keratin Keratin () is one of a family of structural fibrous proteins also known as ''scleroproteins''. Alpha-keratin (α-keratin) is a type of keratin found in vertebrates. It is the key structural material making up scales, hair, nails, feathers, ho ...
. This cell-to-ECM adhesion is regulated by specific cell-surface
cellular adhesion molecule Cell adhesion molecules (CAMs) are a subset of cell surface proteins that are involved in the molecular binding, binding of cells with other cells or with the extracellular matrix (ECM), in a process called cell adhesion. In essence, CAMs help ce ...
s (CAM) known as
integrins Integrins are transmembrane receptors that facilitate cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, ...
. Integrins are cell-surface proteins that bind cells to ECM structures, such as fibronectin and laminin, and also to integrin proteins on the surface of other cells. Fibronectins bind to ECM macromolecules and facilitate their binding to transmembrane integrins. The attachment of fibronectin to the extracellular domain initiates intracellular signalling pathways as well as association with the cellular cytoskeleton via a set of adaptor molecules such as actin.


Clinical significance

Extracellular matrix has been found to cause regrowth and healing of tissue. Although the mechanism of action by which extracellular matrix promotes constructive remodeling of tissue is still unknown, researchers now believe that Matrix-bound nanovesicles (MBVs) are a key player in the healing process. In human fetuses, for example, the extracellular matrix works with stem cells to grow and regrow all parts of the human body, and fetuses can regrow anything that gets damaged in the womb. Scientists have long believed that the matrix stops functioning after full development. It has been used in the past to help horses heal torn ligaments, but it is being researched further as a device for tissue regeneration in humans.'Pixie dust' helps man grow new finger
/ref> In terms of injury repair and tissue engineering, the extracellular matrix serves two main purposes. First, it prevents the immune system from triggering from the injury and responding with inflammation and scar tissue. Next, it facilitates the surrounding cells to repair the tissue instead of forming scar tissue. For medical applications, the required ECM is usually extracted from pig bladders, an easily accessible and relatively unused source. It is currently being used regularly to treat ulcers by closing the hole in the tissue that lines the stomach, but further research is currently being done by many universities as well as the U.S. Government for wounded soldier applications. As of early 2007, testing was being carried out on a military base in Texas. Scientists are using a powdered form on Iraq War veterans whose hands were damaged in the war. Not all ECM devices come from the bladder. Extracellular matrix coming from pig small intestine submucosa are being used to repair "atrial septal defects" (ASD), "patent foramen ovale" (PFO) and inguinal hernia. After one year, 95% of the collagen ECM in these patches is replaced by the normal soft tissue of the heart. Extracellular matrix proteins are commonly used in cell culture systems to maintain stem and precursor cells in an undifferentiated state during cell culture and function to induce differentiation of epithelial, endothelial and smooth muscle cells in vitro. Extracellular matrix proteins can also be used to support 3D cell culture in vitro for modelling tumor development. A class of biomaterials derived from processing human or animal tissues to retain portions of the extracellular matrix are called ECM Biomaterial.


In plants

Plant Plants are predominantly photosynthetic eukaryotes of the kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all current definitions of Plantae exclu ...
cells are tessellated to form tissues. The cell wall is the relatively rigid structure surrounding the plant cell. The cell wall provides lateral strength to resist osmotic turgor pressure, but it is flexible enough to allow cell growth when needed; it also serves as a medium for intercellular communication. The cell wall comprises multiple laminate layers of
cellulose Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell w ...
microfibril A microfibril is a very fine fibril, or fiber-like strand, consisting of glycoproteins and cellulose. It is usually, but not always, used as a general term in describing the structure of protein fiber, e.g. hair and sperm tail. Its most frequently ...
s embedded in a matrix of
glycoproteins Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycosy ...
, including
hemicellulose A hemicellulose (also known as polyose) is one of a number of heteropolymers (matrix polysaccharides), such as arabinoxylans, present along with cellulose in almost all terrestrial plant cell walls.Scheller HV, Ulvskov Hemicelluloses.// Annu Rev ...
, pectin, and extensin. The components of the glycoprotein matrix help cell walls of adjacent plant cells to bind to each other. The
selective permeability Semipermeable membrane is a type of biological or synthetic, polymeric membrane that will allow certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure, concentration, and temperature of the molecule ...
of the cell wall is chiefly governed by pectins in the glycoprotein matrix.
Plasmodesmata Plasmodesmata (singular: plasmodesma) are microscopic channels which traverse the cell walls of plant cells and some algal cells, enabling transport and communication between them. Plasmodesmata evolved independently in several lineages, and spec ...
(''singular'': plasmodesma) are pores that traverse the cell walls of adjacent plant cells. These channels are tightly regulated and selectively allow molecules of specific sizes to pass between cells.


In Pluriformea and Filozoa

The extracellular matrix functionality of animals (Metazoa) developed in the common ancestor of the Pluriformea and Filozoa, after the Ichthyosporea diverged.


History

The importance of the extracellular matrix has long been recognized (Lewis, 1922), but the usage of the term is more recent (Gospodarowicz et al., 1979).


See also

*
Anoikis Anoikis is a form of programmed cell death that occurs in anchorage-dependent cells when they detach from the surrounding extracellular matrix (ECM). Usually cells stay close to the tissue to which they belong since the communication between proxima ...
* Interstitium *
Perineuronal net Perineuronal nets (PNNs) are specialized extracellular matrix structures responsible for synaptic stabilization in the adult brain. PNNs are found around certain neuron cell bodies and proximal neurites in the central nervous system. PNNs play a c ...
* Temporal feedback


References


Further reading


Extracellular matrix: review of its roles in acute and chronic wounds


* ttps://web.archive.org/web/20110719215952/http://soundmedicine.iu.edu/segment.php4?seg=2108 Sound Medicine - Heart Tissue Regeneration- July 19 interview discussing ECM and its uses in cardiac tissue repair (requires MP3 playback). {{DEFAULTSORT:Extracellular Matrix Matrices (biology) Tissues (biology)