Explosive forming
   HOME

TheInfoList



OR:

Explosive forming is a metalworking technique in which an explosive charge is used instead of a punch or press. It can be used on materials for which a press setup would be prohibitively large or require an unreasonably high pressure, and is generally much cheaper than building a large enough and sufficiently high-pressure press; on the other hand, it is unavoidably an individual
job production Job production, sometimes called jobbing or one-off production, involves producing custom work, such as a one-off product for a specific customer or a small batch of work in quantities usually less than those of mass-market products. Job producti ...
process, producing one product at a time and with a long setup time. There are various approaches; one is to place metal plate over a die, with the intervening space evacuated by a vacuum pump, place the whole assembly underwater, and detonate a charge at an appropriate distance from the plate. For complicated shapes, a segmented die can be used to produce in a single operation a shape that would require many manufacturing steps, or to be manufactured in parts and welded together with an accompanying loss of strength at the welds. There is often some degree of
work hardening In materials science, work hardening, also known as strain hardening, is the strengthening of a metal or polymer by plastic deformation. Work hardening may be desirable, undesirable, or inconsequential, depending on the context. This strengt ...
from the explosive-forming process, particularly in mild steel.


Tooling

Tooling can be made out of fiberglass for short-run applications, out of concrete for large parts at medium pressures, or out of ductile iron for high-pressure work; ideally the tooling should have higher
yield strength In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and ...
than the material that is being formed, which is a problem since the technique is usually only considered for material which is itself very hard to work.


History

The first commercial industrial application of explosive forming in the United States began in 1950 and was used into the 1970s by The Moore Company in Marceline, Missouri. Purpose was to form proprietary shaped metal cylinders for use as the central structure of industrial axial vane fans. This is detailed in a 1967 N.A.S.A. publication "High-Velocity Metalworking - a survey" at pages 73, 82 & 83. This article misstates the name of company founder Robert David Moore Sr. as "E. R. Moore". Moore ultimately did hold some patents for involved processes. Explosive forming was used in the 1960s for aerospace applications, such as the
chine A chine () is a steep-sided coastal gorge where a river flows to the sea through, typically, soft eroding cliffs of sandstone or clays. The word is still in use in central Southern England—notably in East Devon, Dorset, Hampshire and the Is ...
plates of the SR-71 reconnaissance plane and various Soviet rocket parts; it continued to be developed in Russia, and the organising committees of such events a
EPNM
tend to contain many members from the former Soviet Union. It proved particularly useful for making high-strength corrugated parts which would otherwise have to be milled out of ingots much larger than the finished product. An example would be a yacht constructor who produced boat hulls by making a concrete "swimming pool" into which sheet-metal was placed, and when water filled and explosively fired, produced a complete hull-form. Other uses of explosives for manufacturing take advantage of the
shaped charge A shaped charge is an explosive charge shaped to form an explosively formed penetrator (EFP) to focus the effect of the explosive's energy. Different types of shaped charges are used for various purposes such as cutting and forming metal, ini ...
effect, putting the explosive directly in contact with the metal to be worked; this was used for engraving of thick iron plates as early as the 1890s. See also explosively formed projectiles for a variety of military applications of the same kind of technology.


Explosive forming of vacuum tube anode (plate) materials

In the late 1950s, the
General Electric General Electric Company (GE) is an American multinational conglomerate founded in 1892, and incorporated in New York state and headquartered in Boston. The company operated in sectors including healthcare, aviation, power, renewable en ...
company developed an application for five-layer sheet metal composites that had been created using the explosive forming process. GE engineers used this innovative composite material to produce multi-layer
vacuum tube A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied. The type known as ...
anodes (aka "plates") with superior heat transfer characteristics. This characteristic allowed GE to build significantly higher power vacuum tubes from existing designs without expensive engineering, design, and tooling changes, providing a substantial competitive market advantage to GE in the burgeoning Hi-Fi amplifier market. In January 1960 it was reported in contemporary GE technical literature that this five-layer material was the design breakthrough which made possible the new
6L6 6L6 is the designator for a beam power tube introduced by Radio Corporation of America in April 1936 and marketed for application as a power amplifier for audio frequencies.J. F. Dreyer Jr."The Beam Power Output Tube" New York: McGraw-Hill, ''Ele ...
GC. The 6L6GC was a 6L6 variant able to dissipate 26% more power compared to the otherwise identically constructed 6L6GB. According to General Electric engineer R.E. Moe, then Manager of Engineering at G.E,'s Owensboro Kentucky facility, these increases were made possible by the application of the improved multi-layer plate material. GE sourced this material from a Texas-based firm (Texas Instruments) which is reported to be the source of the explosively forged five-layer raw material specified by General Electric engineers. This manufacturer used explosive sheet metal forging processes previously developed for another customer (possibly the U.S. Navy?) The explosively formed dissimilar materials had substantially improved evenness of heat transfer thanks to the copper center layer. GE engineers quickly saw the potential for improved heat transfer characteristics in several already popular pentode and beam tetrode vacuum tube designs, including the 6L6GB, the 7189, and eventually the 6550. The application of the five-layer (Al-Fe-Cu-Fe-Al) material to anode manufacture solved the problem of irregular heat buildup at high power levels in the anode plates of power pentodes, tetrodes, and triodes. This irregular heat buildup leads to physical distortion of the tube's plate. if allowed to continue, this spot overheating eventually results in warpage which allows physical contact and subsequent short circuits between the plate, grids, and beam formers in the tube. Such contact shorts destroy the tube. General Electric's novel application of this innovative composite led to the creation of the 7189A variant, released in late 1959, along with the 6L6GC and other variants. By 1969, the 6550A variant had also been developed to take advantage of explosively forged composites. GE's application allowed for improved power levels in a number of already popular tube designs, an innovation which helped pave the way for substantially higher power vacuum tube stereo and musical instrument amplifiers in the 1960s and early 1970s.


References

GE Ham News, Vol 15, No. 1, Jan-Feb 1960, pp 1, pp 7, P.E. Hatfield, R.E. Moe


External links


EXPLOSIVE FORMING - An Overview
{{Authority control Metal forming