Experimental archaeometallurgy
   HOME

TheInfoList



OR:

Experimental archaeometallurgy is a subset of experimental archaeology that specifically involves past metallurgical processes most commonly involving the replication of
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
and
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
objects as well as testing the methodology behind the production of ancient metals and metal objects. Metals and elements used primarily as alloying materials, such as tin,
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
, and
arsenic Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. Arsenic is a metalloid. It has various allotropes, b ...
, are also a part of experimental research.


Experimental archaeometallurgy as a sub-discipline

The theory behind experimental archaeology comes from the new archaeology technique of the 1950s to use modern day examples in the form of experiments and ethnologies as analogues to past processes. Experimental archaeometallurgy is considered a part of general experimental archaeology and is rarely separated in the literature and as such, many of the principles stay the same while there is a greater focus on a single subject. Archaeometallurgy works as a good field for experimental reproduction because of the evidence that is provided from excavation is a good starting point for reconstruction. Metallurgical remains provide a durable product that has relatively durable evidence of production methods such as
slag Slag is a by-product of smelting ( pyrometallurgical) ores and used metals. Broadly, it can be classified as ferrous (by-products of processing iron and steel), ferroalloy (by-product of ferroalloy production) or non-ferrous/base metals (by-p ...
and
refractory ceramic In materials science, a refractory material or refractory is a material that is resistant to decomposition by heat, pressure, or chemical attack, and retains strength and form at high temperatures. Refractories are polycrystalline, polyphase ...
remains. Experimentation comes in a varied amount of forms including object replication, system replication, behavioral replication, and process replication.


Research problems

Archaeometallurgical experimentation typically takes place in controlled laboratories or tries to remain as authentic as possible by being conducted using only the materials and facilities that were available to the subjects whose technology is trying to be reconstructed. Regardless of location though, the experimentation is always conducted under a different mindset outside the context of what was originally intended. A constant problem in any type of experimental archaeology is the cultural distance between the archaeologist and the individual who originally was involved with the metallurgy. This difference in mindset may lead to misunderstandings in the processes behind the metallurgy. Second to this, not all experiments are successful and it is hard to determine if this is the fault of the techniques used or the individual conducting the experiment.


Connection with ethnoarchaeology

Ethnoarchaeology has been widely used in conjunction with experimental archaeology using the techniques of modern peoples as analogues to the processes of the past. The attempted use of ethnology in archaeology tries to counteract the cultural distance of the researcher from process by changing the context of experimentation. Africa has played a large role in reconstructing
copper smelting Smelting is a process of applying heat to ore, to extract a base metal. It is a form of extractive metallurgy. It is used to extract many metals from their ores, including silver, iron, copper, and other base metals. Smelting uses heat and a ch ...
and
bloomery A bloomery is a type of metallurgical furnace once used widely for smelting iron from its oxides. The bloomery was the earliest form of smelter capable of smelting iron. Bloomeries produce a porous mass of iron and slag called a ''bloom' ...
iron furnaces as there are still several places that practice a workshop production of iron.Killick 1991 Killick has been one such archaeologist to utilize surviving iron production in Africa to gain further insight into how other furnaces from around the world may have been constructed.


Mining

Mining Mining is the extraction of valuable minerals or other geological materials from the Earth, usually from an ore body, lode, vein, seam, reef, or placer deposit. The exploitation of these deposits for raw material is based on the econom ...
is among the first steps of producing metal and as such is one of the foci of experimental archaeometallurgy. However, experimental research on mining is mostly limited to firesetting and the reproduction and use of mining tools.


Firesetting

Firesetting is the process of exposing a rock face to high temperatures to induce cracking, spalling, and an overall increase to the brittleness of the rock in order to make it more susceptible to mining processes. Understanding the process of firesetting has been a crucial element to the development of an archaeological history of mining and as such has been the subject of several experiments to reproduce the technique.Timberlake 2007 Typically firesetting experiments are conducted by setting a fire next to a predetermined rock face while taking measurements on the amount of and type of fuel used, temperatures of the fire and rock face, the amount of spalling before and after excavation, as well as the amount of time required for the different procedures.Crew 1990Lewis 1990Pickin and Timberlake 1988Timberlake 1990 This examination allows for several possible inferences to be made about the mining process including the total amount of fuel a mining site may have needed to complete and its effects on the surrounding environment as well as how mining labor could have been organized. One outcome of firesetting experimentation is the realization that the quenching, or dousing the rock face with water after heating, is not necessary to making the rock face easier to excavate. The quenching process had been a standard step in most experiments with firesetting, but now more research is necessary to answer the new question of why quenching was used if it was not effective.


Mining tools

Experimental reconstruction of tools used in prehistoric mining is often written about in conjunction with the tools use after the process of firesetting. The experimental mining tool assemblage are primarily made up of
hammerstone In archaeology, a hammerstone is a hard cobble used to strike off lithic flakes from a lump of tool stone during the process of lithic reduction. The hammerstone is a rather universal stone tool which appeared early in most regions of the wor ...
s and antler picks that are reconstructed using willow and hazel sticks, rawhide, and hemp string to implement various hafting techniques and methods of utilization.


Smelting

Smelting Smelting is a process of applying heat to ore, to extract a base metal. It is a form of extractive metallurgy. It is used to extract many metals from their ores, including silver, iron, copper, and other base metals. Smelting uses heat and a c ...
or the reduction of an ore to its metallic state is the primary source of experimentation in archaeometallurgy. In its simplest form smelting can be accomplished by placing an ore sample between two pieces of combusting
charcoal Charcoal is a lightweight black carbon residue produced by strongly heating wood (or other animal and plant materials) in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, ...
in an oxygen reducing atmosphere with a compressed air source to feed the combustion and result in temperatures high enough to smelt metal. But to reach this final metallic state several things need to be done first including the processing of the ore to remove waste or gangue material, the possible roasting of the ore, the smelting of the ore, and then there is the possibility of refining the metal through a series of remelts. Then, through chemical or microscopic analysis, the products of the smelt are analyzed and compared with the findings of archaeological excavation in order to examine the likelihood of various manufacturing processes.


Copper and its alloys

The first recorded experimental work in copper was conducted by Cushing in 1894 in order to demonstrate that copper plate found in Hopewell mounds in
Ohio Ohio () is a U.S. state, state in the Midwestern United States, Midwestern region of the United States. Of the List of states and territories of the United States, fifty U.S. states, it is the List of U.S. states and territories by area, 34th-l ...
could have been produced by the Hopewell people and not come from European trade.Tylecote and Merkel 1985, 4 In his experiments, Cushing used antler and stone tools to cut out sheets of copper and puncture round holes in them through a method of pressure and grinding.Cushing 1894 In addition to the copper sheet experiments, Cushing also conducted smelting experiments reconstructed from finding at Salado Valley,
Arizona Arizona ( ; nv, Hoozdo Hahoodzo ; ood, Alĭ ṣonak ) is a state in the Southwestern United States. It is the 6th largest and the 14th most populous of the 50 states. Its capital and largest city is Phoenix. Arizona is part of the Fou ...
pueblo excavations to reproduce copper artifacts.


Iron

The experimental archaeometallurgy of iron is more recent then that of copper in that for the most part was not widely studied until the mid-20th century.Tylecote and Merkel 1985, 8 This can be attributed to the modern smelting of
wrought iron Wrought iron is an iron alloy with a very low carbon content (less than 0.08%) in contrast to that of cast iron (2.1% to 4%). It is a semi-fused mass of iron with fibrous slag inclusions (up to 2% by weight), which give it a wood-like "grain" ...
still being produced as an industry up until 1900, when the last of the large-scale production shut down, along with the belief among researchers that many of the same techniques had been passed down since the inception of bloomery iron.Killick 1991, 47 A static technique simply was not the case as the technology used to make
Roman Era In modern historiography, ancient Rome refers to Roman civilisation from the founding of the city of Rome in the 8th century BC to the collapse of the Western Roman Empire in the 5th century AD. It encompasses the Roman Kingdom (753–509 BC ...
iron showed the use of a technology that had long since disappeared. That being said research in iron has progressed beyond that of copper due to the greater amount of historic text and surviving remains of iron production. Several experiments have taken place to reproduce bloomery iron.Nosek 1985Pleiner 2000 CloughClough 1985 presents an average example of experimental ironwork with the reproduction possible Roman bowl furnaces. Clough found the reproduction bowl furnaces to be inefficient by producing small amounts of poor quality iron, which, when compared to excavated findings of much larger better quality blooms of iron led to the conclusion that bowl furnaces were not used by the Romans.


Precious metals

Experimental work on precious metals is limited by the cost of experimentation and by the well-understood technical processes involved.
Gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
and
silver Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical ...
are produced in a similar manner to copper with the additional process of cupellation.
Platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
is mostly an issue in
South America South America is a continent entirely in the Western Hemisphere and mostly in the Southern Hemisphere, with a relatively small portion in the Northern Hemisphere at the northern tip of the continent. It can also be described as the sou ...
and is typically left out from experimental archaeometallurgy because of its traditional use as a powdered metal as an additive to produce
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductili ...
s.


Areas of research

Several sets of data can be collected during the experimental process of smelting including fuel consumption rates,Tylecote and Boydell 1978 the effects of variation in furnace airflow, temperatures, production time, and chemical composition.


Replication of techniques

The replication of technique in copper production includes a vast number of possibilities in trying to recreate what has been found through archaeological excavation. Tylecote and Boydell have experimented on possible explanations for the levels of iron found in certain copper objects and the possibility of removing excess iron through the re-melting of the copper. Crew has also done experimental work on iron to show possible loss in iron mass due to the processes involved with working the metal from bloom to billet which concluded with a loss of 75% in slag, impurities, and iron metal.


Alloys

Alloys that are not
bronze Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals, such as phosphorus, or metalloids suc ...
and
brass Brass is an alloy of copper (Cu) and zinc (Zn), in proportions which can be varied to achieve different mechanical, electrical, and chemical properties. It is a substitutional alloy: atoms of the two constituents may replace each other wi ...
have had a limited representation in the literature for archaeometallurgy. This is mostly due to lack of interest or evidence in the archaeological record. Arsenical copper is one such limited research topic with some experimental work done by Pollard, Thomas, and Williams. Through several experimental smeltings of copper ores including arsenic, Pollard, Thomas, and Williams found that arsenic in copper is retained in higher levels when a lower smelting temperature is used, implying that arsenical copper may have been the result of early smelting technologies where temperatures were unable to pass a certain point. Lead experimentation has been limited mostly because of its ease in production. Ore containing lead can be easily smelted, re-melted, and worked and as such there is not much difficulty in understanding how past societies may have produced lead. When lead experiments are conducted, they are done much in the same fashion as copper smelting experiments taking notes on quantitative elements such as completion time, airflow rates, fuel usage, and the resulting amount and composition of metal from the smelt. In addition, lead is a toxic element and special care has to take place in order to experiment with it, which makes limitations on the experiments.


Other aspects

Artifact replication plays an important role in comparing artifact use. Often objects are made not just to prove a manufacturing process or to sit in a display case, but to show that a given object will show signs of wear that are similar to those present in the archaeological record. Roberts and OttawayRoberts B. and Ottaway B., 2003. The Use and Significance of Socketed Axes During the Late Bronze Age. European Journal of Archaeology, Vol. 6, No. 2, 119-140. conducted such experimental reconstructions by casting bronze axes using them in a preconceived manner and then comparing the results against known archaeological remains. Results gathered from such experimentation have found that objects have comparable wear patterns and there are European socketed axes that were deposited used as well as unused. Tool mark identification can also go the opposite ways using experimental reconstruction to show the difference between various material media and the wear patterns they leave. GreenfieldGreenfield H. J., 2002. Distinguishing Metal (Steel and Low-tin Bronze) from Stone (Flint and Obsidian) Tool Cut Marks on Bone: An Experimental Approach. In J. R. Mathieu (ed.) Experimental Archaeology: Replicating Past Objects, Behaviors, and Processes 35-54. Oxford, Archaeopress. BAR International Series 1023. gives one such experiment where steel, bronze, and stone tool marks on bone are all researched and examples are given for how they might be seen in the archaeological record. Energy consumption and efficiency is another topic of interest in archaeometallurgy. Tree felling and land clearing experiments involving comparison of stone, bronze, and steel axes are popular with a number of archaeologistsMathieu J. R. and Meyer D. A., 1997. Comparing Axe Heads of Stone, Bronze, and Steel: Studies in Experimental Archaeology. Journal of Field Archaeology, Vol. 24, No. 3, 333-351.Mathieu J. R. and Meyer D. A., 2002. Reconceptualizing Experimental Archaeology: Assessing the Process of Experimentation. In J. R. Mathieu (ed.) Experimental Archaeology: Replicating Past Objects, Behaviors, and Processes 73-82. Oxford, Archaeopress. BAR International Series 1023.Saraydar and Shimada 1973. Experimental Archaeology: A New Outlook. American Antiquity, Vol. 38, No. 3, 344-350. In these types of experiments, factors such as time spent and oxygen intake of the researchers are taken into account to try to find similarities in past life ways use of energy.


See also

* Experimental archaeology *
Metals of antiquity The metals of antiquity are the seven metals which humans had identified and found use for in prehistoric times in Europe and the Middle East: gold, silver, copper, tin, lead, iron, and mercury. These seven are the metals from which the mode ...
* Mining history *
Extractive metallurgy Extractive metallurgy is a branch of metallurgical engineering wherein process and methods of extraction of metals from their natural mineral deposits are studied. The field is a materials science, covering all aspects of the types of ore, was ...
*
Pyrometallurgy Pyrometallurgy is a branch of extractive metallurgy. It consists of the thermal treatment of minerals and metallurgical ores and concentrates to bring about physical and chemical transformations in the materials to enable recovery of valuable ...
** Calcining **
Roasting Roasting is a cooking method that uses dry heat where hot air covers the food, cooking it evenly on all sides with temperatures of at least from an open flame, oven, or other heat source. Roasting can enhance the flavor through caramelizatio ...
**
Smelting Smelting is a process of applying heat to ore, to extract a base metal. It is a form of extractive metallurgy. It is used to extract many metals from their ores, including silver, iron, copper, and other base metals. Smelting uses heat and a c ...


References


Bibliography

* *{{citation , last=Forrest , first=Carolyn , year=2008 , chapter=The Nature of Scientific Experimentation in Archaeology: Experimental Archaeology from the Nineteenth to the Mid Twentieth Century , editor-last=Cunningham , editor-first=Penny , editor2-last=Heeb , editor2-first=Julia , editor3-last=Paardekooper , editor3-first=Roeland , title=Experiencing Archaeology by Experiment , pages=61–68 , place=Oxford , publisher=Oxbow Books Metallurgy Experimental archaeology Archaeometallurgy History of metallurgy