Erlangen program
   HOME

TheInfoList



OR:

In mathematics, the Erlangen program is a method of characterizing
geometries This is a list of geometry topics. Types, methodologies, and terminologies of geometry. * Absolute geometry * Affine geometry * Algebraic geometry * Analytic geometry * Archimedes' use of infinitesimals * Birational geometry * Complex geometr ...
based on
group theory In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen ...
and
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, ...
. It was published by
Felix Klein Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and grou ...
in 1872 as ''Vergleichende Betrachtungen über neuere geometrische Forschungen.'' It is named after the University Erlangen-Nürnberg, where Klein worked. By 1872, non-Euclidean geometries had emerged, but without a way to determine their hierarchy and relationships. Klein's method was fundamentally innovative in three ways: :* Projective geometry was emphasized as the unifying frame for all other geometries considered by him. In particular,
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
was more restrictive than affine geometry, which in turn is more restrictive than projective geometry. :* Klein proposed that
group theory In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen ...
, a branch of mathematics that uses algebraic methods to abstract the idea of
symmetry Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
, was the most useful way of organizing geometrical knowledge; at the time it had already been introduced into the
theory of equations In algebra, the theory of equations is the study of algebraic equations (also called "polynomial equations"), which are equations defined by a polynomial. The main problem of the theory of equations was to know when an algebraic equation has an ...
in the form of
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to ...
. :* Klein made much more explicit the idea that each geometrical language had its own, appropriate concepts, thus for example projective geometry rightly talked about
conic section In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a ...
s, but not about
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is cons ...
s or
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ...
s because those notions were not invariant under projective transformations (something familiar in
geometrical perspective Linear or point-projection perspective (from la, perspicere 'to see through') is one of two types of graphical projection perspective in the graphic arts; the other is parallel projection. Linear perspective is an approximate representation, ...
). The way the multiple languages of geometry then came back together could be explained by the way
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
s of a
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
related to each other. Later,
Élie Cartan Élie Joseph Cartan (; 9 April 1869 – 6 May 1951) was an influential French mathematician who did fundamental work in the theory of Lie groups, differential systems (coordinate-free geometric formulation of PDEs), and differential geometr ...
generalized Klein's homogeneous model spaces to
Cartan connection In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the ...
s on certain principal bundles, which generalized
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to point ...
.


The problems of nineteenth century geometry

Since
Euclid Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of ...
, geometry had meant the geometry of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
of two dimensions (
plane geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
) or of three dimensions (
solid geometry In mathematics, solid geometry or stereometry is the traditional name for the geometry of three-dimensional, Euclidean spaces (i.e., 3D geometry). Stereometry deals with the measurements of volumes of various solid figures (or 3D figures), inc ...
). In the first half of the nineteenth century there had been several developments complicating the picture. Mathematical applications required geometry of four or more dimensions; the close scrutiny of the foundations of the traditional Euclidean geometry had revealed the independence of the
parallel postulate In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's ''Elements'', is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: ''If a line segmen ...
from the others, and
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean g ...
had been born. Klein proposed an idea that all these new geometries are just special cases of the
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, ...
, as already developed by Poncelet, Möbius, Cayley and others. Klein also strongly suggested to mathematical ''physicists'' that even a moderate cultivation of the projective purview might bring substantial benefits to them. With every geometry, Klein associated an underlying group of symmetries. The hierarchy of geometries is thus mathematically represented as a hierarchy of these
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
, and hierarchy of their invariants. For example, lengths, angles and areas are preserved with respect to the
Euclidean group In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space \mathbb^n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations ...
of symmetries, while only the incidence structure and the
cross-ratio In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points ''A'', ''B'', ''C'' and ''D'' on a line, t ...
are preserved under the most general projective transformations. A concept of
parallel Parallel is a geometric term of location which may refer to: Computing * Parallel algorithm * Parallel computing * Parallel metaheuristic * Parallel (software), a UNIX utility for running programs in parallel * Parallel Sysplex, a cluster o ...
ism, which is preserved in affine geometry, is not meaningful in
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, ...
. Then, by abstracting the underlying
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
of symmetries from the geometries, the relationships between them can be re-established at the group level. Since the group of affine geometry is a
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
of the group of projective geometry, any notion invariant in projective geometry is ''a priori'' meaningful in affine geometry; but not the other way round. If you remove required symmetries, you have a more powerful theory but fewer concepts and theorems (which will be deeper and more general).


Homogeneous spaces

In other words, the "traditional spaces" are
homogeneous space In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group ''G'' is a non-empty manifold or topological space ''X'' on which ''G'' acts transitively. The elements ...
s; but not for a uniquely determined group. Changing the group changes the appropriate geometric language. In today's language, the groups concerned in classical geometry are all very well known as
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the addi ...
s: the
classical groups In mathematics, the classical groups are defined as the special linear groups over the reals , the complex numbers and the quaternions together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or s ...
. The specific relationships are quite simply described, using technical language.


Examples

For example, the group of
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, ...
in ''n'' real-valued dimensions is the symmetry group of ''n''-dimensional real
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
(the
general linear group In mathematics, the general linear group of degree ''n'' is the set of invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, ...
of degree , quotiented by
scalar matrices In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal ...
). The affine group will be the subgroup respecting (mapping to itself, not fixing pointwise) the chosen hyperplane at infinity. This subgroup has a known structure (
semidirect product In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: * an ''inner'' semidirect product is a particular way in wh ...
of the
general linear group In mathematics, the general linear group of degree ''n'' is the set of invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, ...
of degree ''n'' with the subgroup of
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
s). This description then tells us which properties are 'affine'. In Euclidean plane geometry terms, being a parallelogram is affine since affine transformations always take one parallelogram to another one. Being a circle is not affine since an affine shear will take a circle into an ellipse. To explain accurately the relationship between affine and Euclidean geometry, we now need to pin down the group of Euclidean geometry within the affine group. The
Euclidean group In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space \mathbb^n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations ...
is in fact (using the previous description of the affine group) the semi-direct product of the orthogonal (rotation and reflection) group with the translations. (See Klein geometry for more details.)


Influence on later work

The long-term effects of the Erlangen program can be seen all over pure mathematics (see tacit use at
congruence (geometry) In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other. More formally, two sets of points are called congruent if, and only if, one can b ...
, for example); and the idea of transformations and of synthesis using groups of
symmetry Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
has become standard in
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
. When
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
is routinely described in terms of properties invariant under
homeomorphism In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isom ...
, one can see the underlying idea in operation. The groups involved will be infinite-dimensional in almost all cases – and not
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the addi ...
s – but the philosophy is the same. Of course this mostly speaks to the pedagogical influence of Klein. Books such as those by H.S.M. Coxeter routinely used the Erlangen program approach to help 'place' geometries. In pedagogic terms, the program became transformation geometry, a mixed blessing in the sense that it builds on stronger intuitions than the style of
Euclid Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of ...
, but is less easily converted into a
logical system A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A for ...
. In his book ''Structuralism'' (1970)
Jean Piaget Jean William Fritz Piaget (, , ; 9 August 1896 – 16 September 1980) was a Swiss psychologist known for his work on child development. Piaget's theory of cognitive development and epistemological view are together called "genetic epistemolo ...
says, "In the eyes of contemporary structuralist mathematicians, like Bourbaki, the Erlangen program amounts to only a partial victory for structuralism, since they want to subordinate all mathematics, not just geometry, to the idea of
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such a ...
." For a geometry and its group, an element of the group is sometimes called a
motion In physics, motion is the phenomenon in which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed and frame of reference to an observer and m ...
of the geometry. For example, one can learn about the
Poincaré half-plane model In non-Euclidean geometry, the Poincaré half-plane model is the upper half-plane, denoted below as H = \, together with a metric, the Poincaré metric, that makes it a model of two-dimensional hyperbolic geometry. Equivalently the Poincar ...
of
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P ...
through a development based on
hyperbolic motion In geometry, hyperbolic motions are isometric automorphisms of a hyperbolic space. Under composition of mappings, the hyperbolic motions form a continuous group. This group is said to characterize the hyperbolic space. Such an approach to geom ...
s. Such a development enables one to methodically prove the
ultraparallel theorem In hyperbolic geometry, two lines may intersect, be ultraparallel, or be limiting parallel. The ultraparallel theorem states that every pair of (distinct) ultraparallel lines has a unique common perpendicular (a hyperbolic line which is perpend ...
by successive motions.


Abstract returns from the Erlangen program

Quite often, it appears there are two or more distinct
geometries This is a list of geometry topics. Types, methodologies, and terminologies of geometry. * Absolute geometry * Affine geometry * Algebraic geometry * Analytic geometry * Archimedes' use of infinitesimals * Birational geometry * Complex geometr ...
with
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
automorphism group In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the g ...
s. There arises the question of reading the Erlangen program from the ''abstract'' group, to the geometry. One example:
oriented In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space i ...
(i.e., reflections not included)
elliptic geometry Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
(i.e., the surface of an ''n''-sphere with opposite points identified) and
oriented In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space i ...
spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry is the geometry of the two-dimensional surface of a sphere. In this context the word "sphere" refers only to the 2-dimensional surface and other terms like "ball" or "solid sp ...
(the same
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean g ...
, but with opposite points not identified) have
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
automorphism group In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the g ...
, SO(''n''+1) for even ''n''. These may appear to be distinct. It turns out, however, that the geometries are very closely related, in a way that can be made precise. To take another example, elliptic geometries with different radii of curvature have isomorphic automorphism groups. That does not really count as a critique as all such geometries are isomorphic. General
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to point ...
falls outside the boundaries of the program. Complex, dual and double (aka split-complex) numbers appear as homogeneous spaces SL(2,R)/H for the group SL(2,R) and its subgroups H=A, N, K. The group SL(2,R) acts on these homogeneous spaces by
linear fractional transformation In mathematics, a linear fractional transformation is, roughly speaking, a transformation of the form :z \mapsto \frac , which has an inverse. The precise definition depends on the nature of , and . In other words, a linear fractional transfo ...
s and a large portion of the respective geometries can be obtained in a uniform way from the Erlangen programme. Some further notable examples have come up in physics. Firstly, ''n''-dimensional
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P ...
, ''n''-dimensional
de Sitter space In mathematical physics, ''n''-dimensional de Sitter space (often abbreviated to dS''n'') is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an ''n''-sphere (with its canoni ...
and (''n''−1)-dimensional
inversive geometry Inversive activities are processes which self internalise the action concerned. For example, a person who has an Inversive personality internalises his emotion Emotions are mental states brought on by neurophysiological changes, variou ...
all have isomorphic automorphism groups, :\mathrm(n,1)/\mathrm_2,\ the
orthochronous Lorentz group In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch phys ...
, for . But these are apparently distinct geometries. Here some interesting results enter, from the physics. It has been shown that physics models in each of the three geometries are "dual" for some models. Again, ''n''-dimensional anti-de Sitter space and (''n''−1)-dimensional conformal space with "Lorentzian" signature (in contrast with conformal space with "Euclidean" signature, which is identical to
inversive geometry Inversive activities are processes which self internalise the action concerned. For example, a person who has an Inversive personality internalises his emotion Emotions are mental states brought on by neurophysiological changes, variou ...
, for three dimensions or greater) have isomorphic automorphism groups, but are distinct geometries. Once again, there are models in physics with "dualities" between both spaces. See
AdS/CFT In theoretical physics, the anti-de Sitter/conformal field theory correspondence, sometimes called Maldacena duality or gauge/gravity duality, is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter s ...
for more details. The covering group of SU(2,2) is isomorphic to the covering group of SO(4,2), which is the symmetry group of a 4D conformal Minkowski space and a 5D anti-de Sitter space and a complex four-dimensional
twistor space In mathematics and theoretical physics (especially twistor theory), twistor space is the complex vector space of solutions of the twistor equation \nabla_^\Omega_^=0 . It was described in the 1960s by Roger Penrose and Malcolm MacCallum. Accor ...
. The Erlangen program can therefore still be considered fertile, in relation with dualities in physics. In the seminal paper which introduced categories,
Saunders Mac Lane Saunders Mac Lane (4 August 1909 – 14 April 2005) was an American mathematician who co-founded category theory with Samuel Eilenberg. Early life and education Mac Lane was born in Norwich, Connecticut, near where his family lived in Taftville ...
and
Samuel Eilenberg Samuel Eilenberg (September 30, 1913 – January 30, 1998) was a Polish-American mathematician who co-founded category theory (with Saunders Mac Lane) and homological algebra. Early life and education He was born in Warsaw, Kingdom of Poland to ...
stated: "This may be regarded as a continuation of the Klein Erlanger Program, in the sense that a geometrical space with its group of transformations is generalized to a category with its algebra of mappings." Relations of the Erlangen program with work of
Charles Ehresmann Charles Ehresmann (19 April 1905 – 22 September 1979) was a German-born French mathematician who worked in differential topology and category theory. He was an early member of the Bourbaki group, and is known for his work on the differential ...
on groupoids in geometry is considered in the article below by Pradines. In
mathematical logic Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of forma ...
, the Erlangen program also served as an inspiration for
Alfred Tarski Alfred Tarski (, born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician a ...
in his analysis of logical notions.Luca Belotti, ''Tarski on Logical Notions'', Synthese, 404-413, 2003.


References

*Klein, Felix (1872) "A comparative review of recent researches in geometry". Complete English Translation is here https://arxiv.org/abs/0807.3161. *Sharpe, Richard W. (1997) ''Differential geometry: Cartan's generalization of Klein's Erlangen program'' Vol. 166. Springer. *
Heinrich Guggenheimer Heinrich Walter Guggenheimer (July 21, 1924 – March 4, 2021) was a German-born Swiss-American mathematician who has contributed to knowledge in differential geometry, topology, algebraic geometry, and convexity. He has also contributed volume ...
(1977) ''Differential Geometry'', Dover, New York, . :Covers the work of Lie, Klein and Cartan. On p. 139 Guggenheimer sums up the field by noting, "A Klein geometry is the theory of geometric invariants of a transitive transformation group (Erlangen program, 1872)". * Thomas Hawkins (1984) "The ''Erlanger Program'' of Felix Klein: Reflections on Its Place In the History of Mathematics",
Historia Mathematica ''Historia Mathematica: International Journal of History of Mathematics'' is an academic journal on the history of mathematics published by Elsevier. It was established by Kenneth O. May in 1971 as the free newsletter ''Notae de Historia Mathema ...
11:442–70. * * Lizhen Ji and Athanase Papadopoulos (editors) (2015) ''Sophus Lie and Felix Klein: The Erlangen program and its impact in mathematics and physics'', IRMA Lectures in Mathematics and Theoretical Physics 23, European Mathematical Society Publishing House, Zürich. *
Felix Klein Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and grou ...
(1872) "Vergleichende Betrachtungen über neuere geometrische Forschungen" ('A comparative review of recent researches in geometry'), Mathematische Annalen, 43 (1893) pp. 63–100 (Also: Gesammelte Abh. Vol. 1, Springer, 1921, pp. 460–497). :An English translation by Mellen Haskell appeared in ''Bull. N. Y. Math. Soc'' 2 (1892–1893): 215–249. :The original German text of the Erlangen program can be viewed at the University of Michigan online collection a

and also a

in HTML format. :A central information page on the Erlangen program maintained by
John Baez John Carlos Baez (; born June 12, 1961) is an American mathematical physicist and a professor of mathematics at the University of California, Riverside (UCR) in Riverside, California. He has worked on spin foams in loop quantum gravity, appli ...
is a

*
Felix Klein Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and grou ...
(2004) ''Elementary Mathematics from an Advanced Standpoint: Geometry'', Dover, New York, :(translation of ''Elementarmathematik vom höheren Standpunkte aus'', Teil II: Geometrie, pub. 1924 by Springer). Has a section on the Erlangen program. {{DEFAULTSORT:Erlangen program Classical geometry Symmetry Group theory Homogeneous spaces Erlangen