Epsilon Eridani
   HOME

TheInfoList



OR:

Epsilon Eridani ( Latinized from ε Eridani), formally named Ran, is a star in the southern constellation of Eridanus, at a declination of 9.46° south of the
celestial equator The celestial equator is the great circle of the imaginary celestial sphere on the same plane as the equator of Earth. This plane of reference bases the equatorial coordinate system. In other words, the celestial equator is an abstract proj ...
. This allows it to be visible from most of Earth's surface. At a distance of from the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
, it has an
apparent magnitude Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's ...
of 3.73. It is the third-closest individual star or star system visible to the unaided eye. The star is estimated to be less than a billion years old. Because of its relative youth, Epsilon Eridani has a higher level of
magnetic activity A stellar magnetic field is a magnetic field generated by the motion of conductive plasma inside a star. This motion is created through convection, which is a form of energy transport involving the physical movement of material. A localized mag ...
than the present-day Sun, with a stellar wind 30 times as strong. Its rotation period is 11.2 days at the equator. Epsilon Eridani is smaller and less massive than the Sun, and has a comparatively lower level of elements heavier than helium. It is a
main-sequence star In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar Hert ...
of
spectral class In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the ...
K2, which means that energy generated at the core through
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
is emitted from the surface at a temperature of about , giving it an orange hue. The Bayer designation ε Eridani (Latinised as Epsilon Eridani) was established in 1603 by Johann Bayer. It may be a member of the Ursa Major Moving Group of stars that share a similar motion through the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
, implying these stars shared a common origin in an open cluster. Its nearest neighbour, the binary star system
Luyten 726-8 Luyten 726-8, also known as Gliese 65, is a binary star system that is one of Earth's nearest neighbors, at about 8.7 light years from Earth in the constellation Cetus. The two component stars are both flare stars with the variable s ...
, will have a close encounter with Epsilon Eridani in approximately 31,500 years when they will be separated by about . The motion of Epsilon Eridani along the line of sight to Earth, known as the radial velocity, has been regularly observed for more than twenty years. Periodic changes in its value yielded evidence of a
giant planet The giant planets constitute a diverse type of planet much larger than Earth. They are usually primarily composed of low-boiling-point materials (volatiles), rather than rock or other solid matter, but massive solid planets can also exist. The ...
,
Epsilon Eridani b Epsilon Eridani b, also known as AEgir ,There is some question on whether the name should be spelled (with an æ ligature), but the official press release from the IAU has . is an exoplanet approximately 10.5 light-years away orbiting the star ...
, orbiting the star, making it one of the closest star systems with a candidate exoplanet. The discovery of the planet has been controversial because of the amount of background noise in the radial velocity data, particularly in the early observation, but most astronomers now regard the planet as confirmed. In 2016 it was given the alternative name AEgir . The Epsilon Eridani system also includes two belts of rocky asteroids: at about 3 AU and 20 AU from the star. The orbital structure could be maintained by a hypothetical second planet, which if confirmed would be called Epsilon Eridani c. Epsilon Eridani hosts an extensive outer
debris disk A debris disk (American English), or debris disc (Commonwealth English), is a circumstellar disk of dust and debris in orbit around a star. Sometimes these disks contain prominent rings, as seen in the image of Fomalhaut on the right. Debris di ...
of remnant planetesimals left over from the system's formation. As one of the nearest Sun-like stars with a planet, Epsilon Eridani has been the target of several observations in the search for extraterrestrial intelligence. Epsilon Eridani appears in
science fiction Science fiction (sometimes shortened to Sci-Fi or SF) is a genre of speculative fiction which typically deals with imaginative and futuristic concepts such as advanced science and technology, space exploration, time travel, parallel uni ...
stories and has been suggested as a destination for
interstellar travel Interstellar travel is the hypothetical travel of spacecraft from one star system, solitary star, or planetary system to another. Interstellar travel is expected to prove much more difficult than interplanetary spaceflight due to the vast diffe ...
. From Epsilon Eridani, the Sun would appear as a 2.4-magnitude star in
Serpens Serpens ( grc, , , the Serpent) is a constellation in the northern celestial hemisphere. One of the 48 constellations listed by the 2nd-century astronomer Ptolemy, it remains one of the 88 modern constellations designated by the International ...
.


Nomenclature

''ε Eridani'', Latinised to ''Epsilon Eridani'', is the star's Bayer designation. Despite being a relatively bright star, it was not given a proper name by early astronomers. It has several other catalogue designations. Upon its discovery, the planet was designated Epsilon Eridani b, following the usual designation system for extrasolar planets. The planet and its host star were selected by the
International Astronomical Union The International Astronomical Union (IAU; french: link=yes, Union astronomique internationale, UAI) is a nongovernmental organisation with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreac ...
(IAU) as part of the
NameExoWorlds NameExoWorlds (also known as IAU NameExoWorlds) is the name of various projects managed by the International Astronomical Union (I.A.U.) to encourage names to be submitted for astronomical objects, which would later be considered for official ad ...
competition for giving proper names to exoplanets and their host stars, for some systems that did not already have proper names. The process involved nominations by educational groups and public voting for the proposed names. In December 2015, the IAU announced the winning names were ''Ran'' for the star and ''AEgir'' for the planet. Those names had been submitted by the pupils of the 8th Grade at Mountainside Middle School in
Colbert, Washington Colbert () is an unincorporated area, unincorporated community in Spokane County, Washington, Spokane County, Washington (state), Washington, United States. The town is on U.S. Route 2 in Washington, U.S. Route 2, north of the city of Spokane, Wash ...
, United States. Both names derive from Norse mythology: Rán is the goddess of the sea and
Ægir Ægir (anglicised as Aegir; Old Norse 'sea'), Hlér (Old Norse 'sea'), or Gymir (Old Norse less clearly 'sea, engulfer'), is a jötunn and a personification of the sea in Norse mythology. In the Old Norse record, Ægir hosts the gods in his halls ...
, her husband, is the god of the ocean. The names at that point remained unofficial, but in 2016 the IAU organised a
Working Group on Star Names The International Astronomical Union (IAU) established a Working Group on Star Names (WGSN) in May 2016 to catalog and standardize proper names for stars for the international astronomical community. It operates under Division C – Education ...
(WGSN) to catalogue and standardise proper names for stars. In its first bulletin of July 2016, the WGSN explicitly recognised the names of exoplanets and their host stars that were produced by the competition. Epsilon Eridani is now listed as Ran in the IAU Catalog of Star Names. It is not yet clear whether professional astronomers will generally use the new name, or continue to refer to the star as Epsilon Eridani; both are now equally valid. In Chinese, (), meaning '' Celestial Meadows'', refers to an asterism consisting of ε Eridani, γ Eridani, δ Eridani, π Eridani, ζ Eridani, η Eridani, π Ceti, τ1 Eridani, τ2 Eridani, τ3 Eridani, τ4 Eridani, τ5 Eridani, τ6 Eridani, τ7 Eridani, τ8 Eridani and τ9 Eridani. Consequently, the
Chinese name Chinese names or Chinese personal names are names used by individuals from Greater China and other parts of the Chinese-speaking world throughout East and Southeast Asia (ESEA). In addition, many names used in Japan, Korea and Vietnam are ofte ...
for ε Eridani itself is (, the Fourth
tar Tar is a dark brown or black viscous liquid of hydrocarbons and free carbon, obtained from a wide variety of organic materials through destructive distillation. Tar can be produced from coal, wood, petroleum, or peat. "a dark brown or black bi ...
of Celestial Meadows.)


Observational history


Cataloguing

Epsilon Eridani has been known to astronomers since at least the 2nd century AD, when
Claudius Ptolemy Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of importa ...
(a Greek astronomer from
Alexandria Alexandria ( or ; ar, ٱلْإِسْكَنْدَرِيَّةُ ; grc-gre, Αλεξάνδρεια, Alexándria) is the second largest city in Egypt, and the largest city on the Mediterranean coast. Founded in by Alexander the Great, Alexandri ...
,
Egypt Egypt ( ar, مصر , ), officially the Arab Republic of Egypt, is a transcontinental country spanning the northeast corner of Africa and southwest corner of Asia via a land bridge formed by the Sinai Peninsula. It is bordered by the Medit ...
) included it in his catalogue of more than a thousand stars. The catalogue was published as part of his astronomical treatise the '' Almagest''. The constellation Eridanus was named by Ptolemy ( grc, Ποταμού, River), and Epsilon Eridani was listed as its thirteenth star. Ptolemy called Epsilon Eridani , for, grc, Greek, a foregoing of the four (here is the number four). This refers to a group of four stars in Eridanus: γ, π, δ and ε (10th–13th in Ptolemy's list). ε is the most western of these, and thus the first of the four in the apparent daily motion of the sky from east to west. Modern scholars of Ptolemy's catalogue designate its entry as ''"P 784"'' (in order of appearance) and ''"Eri 13"''. Ptolemy described the star's
magnitude Magnitude may refer to: Mathematics *Euclidean vector, a quantity defined by both its magnitude and its direction *Magnitude (mathematics), the relative size of an object *Norm (mathematics), a term for the size or length of a vector *Order of ...
as 3. Epsilon Eridani was included in several star catalogues of medieval Islamic astronomical treatises, which were based on Ptolemy's catalogue: in Al-Sufi's ''
Book of Fixed Stars The ''Book of Fixed Stars'' ( ar, كتاب صور الكواكب ', literally ''The Book of the Shapes of Stars'') is an astronomical text written by Abd al-Rahman al-Sufi (Azophi) around 964. Following the translation movement in the 9th centu ...
'', published in 964,
Al-Biruni Abu Rayhan Muhammad ibn Ahmad al-Biruni (973 – after 1050) commonly known as al-Biruni, was a Khwarazmian Iranian in scholar and polymath during the Islamic Golden Age. He has been called variously the "founder of Indology", "Father of Co ...
's ''Mas'ud Canon'', published in 1030, and
Ulugh Beg Mīrzā Muhammad Tāraghay bin Shāhrukh ( chg, میرزا محمد طارق بن شاہ رخ, fa, میرزا محمد تراغای بن شاہ رخ), better known as Ulugh Beg () (22 March 1394 – 27 October 1449), was a Timurid sultan, as ...
's '' Zij-i Sultani'', published in 1437. Al-Sufi's estimate of Epsilon Eridani's magnitude was 3. Al-Biruni quotes magnitudes from Ptolemy and Al-Sufi (for Epsilon Eridani he quotes the value 4 for both Ptolemy's and Al-Sufi's magnitudes; original values of both these magnitudes are 3). Its number in order of appearance is 786. Ulugh Beg carried out new measurements of Epsilon Eridani's coordinates in his observatory at Samarkand, and quotes magnitudes from Al-Sufi (3 for Epsilon Eridani). The modern designations of its entry in Ulugh Beg's catalogue are ''"U 781"'' and ''"Eri 13"'' (the latter is the same as Ptolemy's catalogue designation). In 1598 Epsilon Eridani was included in
Tycho Brahe Tycho Brahe ( ; born Tyge Ottesen Brahe; generally called Tycho (14 December 154624 October 1601) was a Danish astronomer, known for his comprehensive astronomical observations, generally considered to be the most accurate of his time. He was ...
's star catalogue, republished in 1627 by Johannes Kepler as part of his ''
Rudolphine Tables The ''Rudolphine Tables'' ( la, Tabulae Rudolphinae) consist of a star catalogue and planetary tables published by Johannes Kepler in 1627, using observational data collected by Tycho Brahe (1546–1601). The tables are named in memory of Rudolf ...
''. This catalogue was based on Tycho Brahe's observations of 1577–1597, including those on the island of
Hven Ven ( da, Hven, older Swedish spelling Hven) is a small Swedish island in the Øresund strait, between Scania and Zealand (Denmark). It is part of Landskrona Municipality, Scania County. The island has 371 inhabitants and an area of . During ...
at his observatories of Uraniborg and
Stjerneborg Stjerneborg ("Star Castle" in English) was Tycho Brahe's underground observatory next to his palace-observatory Uraniborg, located on the island of Hven in the Øresund between Denmark and Sweden. Tycho Brahe built it circa 1581. He wrote: " ...
. The sequence number of Epsilon Eridani in the constellation Eridanus was 10, and it was designated , ; the meaning is the same as Ptolemy's description. Brahe assigned it magnitude 3. Epsilon Eridani's Bayer designation was established in 1603 as part of the ''
Uranometria ''Uranometria'' is a star atlas produced by Johann Bayer. It was published in Augsburg in 1603 by Christoph Mangle (''Christophorus Mangus'') under the full title ''Uranometria: omnium asterismorum continens schemata, nova methodo delineata, a ...
'', a star catalogue produced by German celestial cartographer Johann Bayer. His catalogue assigned letters from the
Greek alphabet The Greek alphabet has been used to write the Greek language since the late 9th or early 8th century BCE. It is derived from the earlier Phoenician alphabet, and was the earliest known alphabetic script to have distinct letters for vowels as w ...
to groups of stars belonging to the same visual magnitude class in each constellation, beginning with alpha (α) for a star in the brightest class. Bayer made no attempt to arrange stars by relative brightness within each class. Thus, although Epsilon is the fifth letter in the Greek alphabet, the star is the tenth-brightest in Eridanus. In addition to the letter ε, Bayer had given it the number 13 (the same as Ptolemy's catalogue number, as were many of Bayer's numbers) and described it as , for, , Latin, the seventeenth. Bayer assigned Epsilon Eridani magnitude 3. In 1690 Epsilon Eridani was included in the star catalogue of
Johannes Hevelius Johannes Hevelius Some sources refer to Hevelius as Polish: * * * * * * * Some sources refer to Hevelius as German: * * * * *of the Royal Society * (in German also known as ''Hevel''; pl, Jan Heweliusz; – 28 January 1687) was a councillor ...
. Its sequence number in constellation Eridanus was 14, its designation was (''the third''), and it was assigned magnitude 3 or 4 (sources differ). The star catalogue of English astronomer
John Flamsteed John Flamsteed (19 August 1646 – 31 December 1719) was an English astronomer and the first Astronomer Royal. His main achievements were the preparation of a 3,000-star catalogue, ''Catalogus Britannicus'', and a star atlas called '' Atlas C ...
, published in 1712, gave Epsilon Eridani the
Flamsteed designation A Flamsteed designation is a combination of a number and constellation name that uniquely identifies most naked eye stars in the modern constellations visible from southern England. They are named for John Flamsteed who first used them while co ...
of 18 Eridani, because it was the eighteenth catalogued star in the constellation of Eridanus by order of increasing right ascension. In 1818 Epsilon Eridani was included in
Friedrich Bessel Friedrich Wilhelm Bessel (; 22 July 1784 – 17 March 1846) was a German astronomer, mathematician, physicist, and geodesist. He was the first astronomer who determined reliable values for the distance from the sun to another star by the method ...
's catalogue, based on
James Bradley James Bradley (1692–1762) was an English astronomer and priest who served as the third Astronomer Royal from 1742. He is best known for two fundamental discoveries in astronomy, the aberration of light (1725–1728), and the nutation of th ...
's observations from 1750–1762, and at magnitude 4. It also appeared in Nicolas Louis de Lacaille's catalogue of 398 principal stars, whose 307-star version was published in 1755 in the , and whose full version was published in 1757 in '', Paris''. In its 1831 edition by Francis Baily, Epsilon Eridani has the number 50. Lacaille assigned it magnitude 3. In 1801 Epsilon Eridani was included in ,
Joseph Jérôme Lefrançois de Lalande Joseph is a common male given name, derived from the Hebrew Yosef (יוֹסֵף). "Joseph" is used, along with "Josef", mostly in English, French and partially German languages. This spelling is also found as a variant in the languages of the mo ...
's catalogue of about 50,000 stars, based on his observations of 1791–1800, in which observations are arranged in time order. It contains three observations of Epsilon Eridani.1796 September 17 (page 246), 1796 December 3 (page 248) and 1797 November 13 (page 307) In 1847, a new edition of Lalande's catalogue was published by Francis Baily, containing the majority of its observations, in which the stars were numbered in order of right ascension. Because every observation of each star was numbered and Epsilon Eridani was observed three times, it got three numbers: 6581, 6582 and 6583. (Today numbers from this catalogue are used with the prefix "Lalande", or "Lal".) Lalande assigned Epsilon Eridani magnitude 3. Also in 1801 it was included in the catalogue of Johann Bode, in which about 17,000 stars were grouped into 102 constellations and numbered (Epsilon Eridani got the number 159 in the constellation Eridanus). Bode's catalogue was based on observations of various astronomers, including Bode himself, but mostly on Lalande's and Lacaille's (for the southern sky). Bode assigned Epsilon Eridani magnitude 3. In 1814
Giuseppe Piazzi Giuseppe Piazzi ( , ; 16 July 1746 – 22 July 1826) was an Italian Catholic priest of the Theatine order, mathematician, and astronomer. He established an observatory at Palermo, now the '' Osservatorio Astronomico di Palermo – Giuseppe S ...
published the second edition of his star catalogue (its first edition was published in 1803), based on observations during 1792–1813, in which more than 7000 stars were grouped into 24 hours (0–23). Epsilon Eridani is number 89 in hour 3. Piazzi assigned it magnitude 4. In 1918 Epsilon Eridani appeared in the Henry Draper Catalogue with the designation HD 22049 and a preliminary spectral classification of K0.


Detection of proximity

Based on observations between 1800 and 1880, Epsilon Eridani was found to have a large proper motion across the celestial sphere, which was estimated at three arcseconds per year ( angular velocity). This movement implied it was relatively close to the Sun, making it a star of interest for the purpose of stellar parallax measurements. This process involves recording the position of Epsilon Eridani as Earth moves around the Sun, which allows a star's distance to be estimated. From 1881 to 1883, American astronomer William L. Elkin used a heliometer at the Royal Observatory at the Cape of Good Hope, South Africa, to compare the position of Epsilon Eridani with two nearby stars. From these observations, a parallax of was calculated. By 1917, observers had refined their parallax estimate to 0.317 arcseconds. The modern value of 0.3109 arcseconds is equivalent to a distance of about .


Circumstellar discoveries

Based on apparent changes in the position of Epsilon Eridani between 1938 and 1972, Peter van de Kamp proposed that an unseen companion with an orbital period of 25 years was causing gravitational perturbations in its position. This claim was refuted in 1993 by
Wulff-Dieter Heintz Wulff-Dieter Heintz (3 June 1930 – 10 June 2006) was a German astronomer who worked the latter part of his career in the United States. He was Professor Emeritus of Astronomy at Swarthmore College. He specialised in the characterisation of bina ...
and the false detection was blamed on a systematic error in the photographic plates. Launched in 1983, the
space telescope A space telescope or space observatory is a telescope in outer space used to observe astronomical objects. Suggested by Lyman Spitzer in 1946, the first operational telescopes were the American Orbiting Astronomical Observatory, OAO-2 launch ...
IRAS detected
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
emissions from stars near to the Sun, including an excess infrared emission from Epsilon Eridani. The observations indicated a disk of fine-grained
cosmic dust Cosmic dust, also called extraterrestrial dust, star dust or space dust, is dust which exists in outer space, or has fallen on Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 micrometers). Larger particles are c ...
was orbiting the star; this
debris disk A debris disk (American English), or debris disc (Commonwealth English), is a circumstellar disk of dust and debris in orbit around a star. Sometimes these disks contain prominent rings, as seen in the image of Fomalhaut on the right. Debris di ...
has since been extensively studied. Evidence for a planetary system was discovered in 1998 by the observation of asymmetries in this dust ring. The clumping in the dust distribution could be explained by gravitational interactions with a planet orbiting just inside the dust ring. In 1987, the detection of an orbiting planetary object was announced by Bruce Campbell, Gordon Walker and Stephenson Yang. From 1980 to 2000, a team of astronomers led by
Artie P. Hatzes Artie P. Hatzes (born May 24, 1957) is an American astronomer. He is a professor at the Friedrich Schiller University of Jena and director of the Karl Schwarzschild Observatory (Thuringian State Observatory). Hatzes is a pioneer in the search of ...
made radial velocity observations of Epsilon Eridani, measuring the Doppler shift of the star along the line of sight. They found evidence of a planet orbiting the star with a period of about seven years. Although there is a high level of noise in the radial velocity data due to magnetic activity in its photosphere, any periodicity caused by this magnetic activity is expected to show a strong correlation with variations in
emission line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to identi ...
s of ionized calcium (the Ca II H and K lines). Because no such correlation was found, a planetary companion was deemed the most likely cause. This discovery was supported by astrometric measurements of Epsilon Eridani made between 2001 and 2003 with the
Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
, which showed evidence for
gravitational perturbation In astronomy, perturbation is the complex motion of a massive body subjected to forces other than the gravitational attraction of a single other massive body. The other forces can include a third (fourth, fifth, etc.) body, resistance, as from ...
of Epsilon Eridani by a planet. Astrophysicist Alice C. Quillen and her student Stephen Thorndike performed computer simulations of the structure of the dust disk around Epsilon Eridani. Their model suggested that the clumping of the dust particles could be explained by the presence of a second planet in an eccentric orbit, which they announced in 2002.


SETI and proposed exploration

In 1960, physicists
Philip Morrison Philip Morrison (November 7, 1915 – April 22, 2005) was a professor of physics at the Massachusetts Institute of Technology (MIT). He is known for his work on the Manhattan Project during World War II, and for his later work in quantum physi ...
and Giuseppe Cocconi proposed that extraterrestrial civilisations might be using radio signals for communication.
Project Ozma Project Ozma was a search for extraterrestrial intelligence (SETI) experiment started in 1960 by Cornell University astronomer Frank Drake, at the National Radio Astronomy Observatory, Green Bank at Green Bank, West Virginia. The object of the e ...
, led by astronomer
Frank Drake Frank Donald Drake (May 28, 1930 – September 2, 2022) was an American astrophysicist and astrobiologist. He began his career as a radio astronomer, studying the planets of the Solar System and later pulsars. Drake expanded his interests ...
, used the Tatel Telescope to search for such signals from the nearby Sun-like stars Epsilon Eridani and
Tau Ceti Tau Ceti, Latinized from τ Ceti, is a single star in the constellation Cetus that is spectrally similar to the Sun, although it has only about 78% of the Sun's mass. At a distance of just under from the Solar System, it is a rela ...
. The systems were observed at the emission frequency of neutral hydrogen, 1,420 MHz (21 cm). No signals of intelligent extraterrestrial origin were detected. Drake repeated the experiment in 2010, with the same negative result. Despite this lack of success, Epsilon Eridani made its way into science fiction literature and television shows for many years following news of Drake's initial experiment. In ''Habitable Planets for Man'', a 1964 RAND Corporation study by space scientist Stephen H. Dole, the probability of a habitable planet being in orbit around Epsilon Eridani were estimated at 3.3%. Among the known nearby stars, it was listed with the 14 stars that were thought most likely to have a habitable planet. William I. McLaughlin proposed a new strategy in the search for extraterrestrial intelligence (
SETI The search for extraterrestrial intelligence (SETI) is a collective term for scientific searches for intelligent extraterrestrial life, for example, monitoring electromagnetic radiation for signs of transmissions from civilizations on other pl ...
) in 1977. He suggested that widely observable events such as nova explosions might be used by intelligent extraterrestrials to synchronise the transmission and reception of their signals. This idea was tested by the National Radio Astronomy Observatory in 1988, which used outbursts of Nova Cygni 1975 as the timer. Fifteen days of observation showed no anomalous radio signals coming from Epsilon Eridani. Because of the proximity and Sun-like properties of Epsilon Eridani, in 1985 physicist and author
Robert L. Forward Robert Lull Forward (August 15, 1932 – September 21, 2002) was an American physicist and science fiction writer. His literary work was noted for its scientific credibility and use of ideas developed from his career as an aerospace engineer. He ...
considered the system as a plausible target for
interstellar travel Interstellar travel is the hypothetical travel of spacecraft from one star system, solitary star, or planetary system to another. Interstellar travel is expected to prove much more difficult than interplanetary spaceflight due to the vast diffe ...
. The following year, the British Interplanetary Society suggested Epsilon Eridani as one of the targets in its
Project Daedalus Project Daedalus (named after Daedalus, the Greek mythological designer who crafted wings for human flight) was a study conducted between 1973 and 1978 by the British Interplanetary Society to design a plausible uncrewed interstellar probe.Pro ...
study. The system has continued to be among the targets of such proposals, such as Project Icarus in 2011. Based on its nearby location, Epsilon Eridani was among the target stars for Project Phoenix, a 1995
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
survey for signals from extraterrestrial intelligence. The project had checked about 800 stars by 2004 but had not yet detected any signals.


Properties

At a distance of , Epsilon Eridani is the 13th-nearest known star (and ninth nearest solitary star or
stellar system A star system or stellar system is a small number of stars that orbit each other, bound by gravitational attraction. A large group of stars bound by gravitation is generally called a ''star cluster'' or ''galaxy'', although, broadly speaking, ...
) to the Sun as of 2014. Its proximity makes it one of the most studied stars of its
spectral type In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the ...
. Epsilon Eridani is located in the northern part of the constellation Eridanus, about 3° east of the slightly brighter star Delta Eridani. With a declination of −9.46°, Epsilon Eridani can be viewed from much of Earth's surface, at suitable times of year. Only to the north of latitude 80° N is it permanently hidden below the horizon. The
apparent magnitude Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's ...
of 3.73 can make it difficult to observe from an urban area with the unaided eye, because the night skies over cities are obscured by light pollution. Epsilon Eridani has an estimated mass of 0.82 solar masses and a radius of 0.74
solar radii Solar radius is a unit of distance used to express the size of stars in astronomy relative to the Sun. The solar radius is usually defined as the radius to the layer in the Sun's photosphere where the optical depth equals 2/3: :1\,R_ = 6.957\tim ...
. It shines with a luminosity of only 0.34 solar luminosities. The estimated effective temperature is 5,084 K. With a stellar classification of K2 V, it is the second-nearest K-type main-sequence star (after Alpha Centauri B). Since 1943 the
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
of Epsilon Eridani has served as one of the stable anchor points by which other stars are classified. Its metallicity, the fraction of elements heavier than
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
, is slightly lower than the Sun's. In Epsilon Eridani's chromosphere, a region of the outer atmosphere just above the light emitting photosphere, the abundance of iron is estimated at 74% of the Sun's value. The proportion of
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid ...
in the atmosphere is five times less than that in the Sun. Epsilon Eridani's K-type classification indicates that the spectrum has relatively weak absorption lines from absorption by hydrogen (
Balmer lines The Balmer series, or Balmer lines in atomic physics, is one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empirical equation discovered b ...
) but strong lines of neutral atoms and singly
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
ized
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar t ...
(Ca II). The
luminosity class In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the ...
V (dwarf) is assigned to stars that are undergoing thermonuclear fusion of hydrogen in their core. For a K-type main-sequence star, this fusion is dominated by the proton–proton chain reaction, in which a series of reactions effectively combines four hydrogen nuclei to form a helium nucleus. The energy released by fusion is transported outward from the core through radiation, which results in no net motion of the surrounding plasma. Outside of this region, in the envelope, energy is carried to the photosphere by plasma convection, where it then radiates into space.


Magnetic activity

Epsilon Eridani has a higher level of
magnetic activity A stellar magnetic field is a magnetic field generated by the motion of conductive plasma inside a star. This motion is created through convection, which is a form of energy transport involving the physical movement of material. A localized mag ...
than the Sun, and thus the outer parts of its atmosphere (the chromosphere and
corona Corona (from the Latin for 'crown') most commonly refers to: * Stellar corona, the outer atmosphere of the Sun or another star * Corona (beer), a Mexican beer * Corona, informal term for the coronavirus SARS-CoV-2, which causes the COVID-19 di ...
) are more dynamic. The average magnetic field strength of Epsilon Eridani across the entire surface is , which is more than forty times greater than the magnetic-field strength in the Sun's photosphere. The magnetic properties can be modelled by assuming that regions with a magnetic flux of about 0.14 T randomly cover approximately 9% of the photosphere, whereas the remainder of the surface is free of magnetic fields. The overall magnetic activity of Epsilon Eridani shows co-existing and year activity cycles. Assuming that its radius does not change over these intervals, the long-term variation in activity level appears to produce a temperature variation of 15 K, which corresponds to a variation in
visual magnitude Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's lig ...
(V) of 0.014. The magnetic field on the surface of Epsilon Eridani causes variations in the
hydrodynamic In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including '' aerodynamics'' (the study of air and other gases in motion) a ...
behaviour of the photosphere. This results in greater jitter during measurements of its radial velocity. Variations of −1 were measured over a 20 year period, which is much higher than the measurement uncertainty of −1. This makes interpretation of periodicities in the radial velocity of Epsilon Eridani, such as those caused by an orbiting planet, more difficult. Epsilon Eridani is classified as a
BY Draconis variable BY Draconis variables are variable stars of late spectral types, usually K or M, and typically belong to the main sequence. The name comes from the archetype for this category of variable star system, BY Draconis. They exhibit variations in thei ...
because it has regions of higher magnetic activity that move into and out of the line of sight as it rotates. Measurement of this
rotational modulation This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outsi ...
suggests that its equatorial region rotates with an average period of 11.2 days, which is less than half of the rotation period of the Sun. Observations have shown that Epsilon Eridani varies as much as 0.050 in V magnitude due to
starspot Starspots are stellar phenomena, so-named by analogy with sunspots. Spots as small as sunspots have not been detected on other stars, as they would cause undetectably small fluctuations in brightness. The commonly observed starspots are in gene ...
s and other short-term magnetic activity. Photometry has also shown that the surface of Epsilon Eridani, like the Sun, is undergoing
differential rotation Differential rotation is seen when different parts of a rotating object move with different angular velocities (rates of rotation) at different latitudes and/or depths of the body and/or in time. This indicates that the object is not solid. In fl ...
i.e. the rotation period at equator differs from that at high
latitude In geography, latitude is a coordinate that specifies the north– south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pol ...
. The measured periods range from 10.8 to 12.3 days. The
axial tilt In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orb ...
of Epsilon Eridani toward the line of sight from Earth is highly uncertain: estimates range from 24° to 72°. The high levels of chromospheric activity, strong magnetic field, and relatively fast rotation rate of Epsilon Eridani are characteristic of a young star. Most estimates of the age of Epsilon Eridani place it in the range from 200 million to 800 million years. The low abundance of heavy elements in the chromosphere of Epsilon Eridani usually indicates an older star, because the interstellar medium (out of which stars form) is steadily enriched by heavier elements produced by older generations of stars. This anomaly might be caused by a
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
process that has transported some of the heavier elements out of the photosphere and into a region below Epsilon Eridani's
convection zone A convection zone, convective zone or convective region of a star is a layer which is unstable due to convection. Energy is primarily or partially transported by convection in such a region. In a radiation zone, energy is transported by radiatio ...
. The
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
luminosity of Epsilon Eridani is about (). It is more luminous in X-rays than the Sun at peak activity. The source for this strong X-ray emission is Epsilon Eridani's hot corona. Epsilon Eridani's corona appears larger and hotter than the Sun's, with a temperature of , measured from observation of the corona's ultraviolet and X-ray emission. It displays a cyclical variation in X-ray emission that is consistent with the magnetic activity cycle. The stellar wind emitted by Epsilon Eridani expands until it collides with the surrounding interstellar medium of diffuse gas and dust, resulting in a bubble of heated hydrogen gas (an astrosphere, the equivalent of the
heliosphere The heliosphere is the magnetosphere, astrosphere and outermost atmospheric layer of the Sun. It takes the shape of a vast, bubble-like region of space. In plasma physics terms, it is the cavity formed by the Sun in the surrounding interstell ...
that surrounds the Sun). The absorption spectrum from this gas has been measured with the
Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
, allowing the properties of the stellar wind to be estimated. Epsilon Eridani's hot corona results in a mass loss rate in Epsilon Eridani's stellar wind that is 30 times higher than the Sun's. This stellar wind generates the astrosphere that spans about and contains a
bow shock In astrophysics, a bow shock occurs when the magnetosphere of an astrophysical object interacts with the nearby flowing ambient plasma such as the solar wind. For Earth and other magnetized planets, it is the boundary at which the speed of th ...
that lies from Epsilon Eridani. At its estimated distance from Earth, this astrosphere spans 42 arcminutes, which is wider than the apparent size of the full Moon.


Kinematics

Epsilon Eridani has a high proper motion, moving −0.976 arcseconds per year in right ascension (the celestial equivalent of longitude) and 0.018 arcseconds per year in declination (celestial latitude), for a combined total of 0.962 arcseconds per year. The star has a radial velocity of (away from the Sun). The space velocity components of Epsilon Eridani in the galactic co-ordinate system are = , which means that it is travelling within the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
at a mean galactocentric distance of 28.7 kly (8.79 kiloparsecs) from the core along an orbit that has an
eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g ...
of 0.09. The velocity and heading of Epsilon Eridani indicate that it may be a member of the Ursa Major Moving Group, whose members share a common motion through space. This behaviour suggests that the moving group originated in an open cluster that has since diffused. The estimated age of this group is years, which lies within the range of the age estimates for Epsilon Eridani. During the past million years, three stars are believed to have come within of Epsilon Eridani. The most recent and closest of these encounters was with Kapteyn's Star, which approached to a distance of about roughly 12,500 years ago. Two more distant encounters were with
Sirius Sirius is the brightest star in the night sky. Its name is derived from the Greek word , or , meaning 'glowing' or 'scorching'. The star is designated α Canis Majoris, Latinized to Alpha Canis Majoris, and abbreviated Alpha CM ...
and Ross 614. None of these encounters are thought to have been close enough to affect the circumstellar disk orbiting Epsilon Eridani. Epsilon Eridani made its closest approach to the Sun about 105,000 years ago, when they were separated by . Based upon a simulation of close encounters with nearby stars, the binary star system
Luyten 726-8 Luyten 726-8, also known as Gliese 65, is a binary star system that is one of Earth's nearest neighbors, at about 8.7 light years from Earth in the constellation Cetus. The two component stars are both flare stars with the variable s ...
, which includes the
variable star A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as e ...
UV Ceti, will encounter Epsilon Eridani in approximately 31,500 years at a minimum distance of about 0.9 ly (0.29 parsecs). They will be less than 1 ly (0.3 parsecs) apart for about 4,600 years. If Epsilon Eridani has an
Oort cloud The Oort cloud (), sometimes called the Öpik–Oort cloud, first described in 1950 by the Dutch astronomer Jan Oort, is a theoretical concept of a cloud of predominantly icy planetesimals proposed to surround the Sun at distances ranging from ...
, Luyten 726-8 could gravitationally
perturb Perturbation or perturb may refer to: * Perturbation theory, mathematical methods that give approximate solutions to problems that cannot be solved exactly * Perturbation (geology), changes in the nature of alluvial deposits over time * Perturbatio ...
some of its
comets A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ar ...
with long
orbital period The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets ...
s.


Planetary system


Dust disk

Observations with the James Clerk Maxwell Telescope at a
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
of 850 μm show an extended flux of radiation out to an angular radius of 35 arcseconds around Epsilon Eridani. The peak emission occurs at an angular radius of 18 arcseconds, which corresponds to a radius of about 60 AU. The highest level of emission occurs over the radius 35–75 AU from Epsilon Eridani and is substantially reduced inside 30 AU. This emission is interpreted as coming from a young analogue of the Solar System's Kuiper belt: a compact dusty disk structure surrounding Epsilon Eridani. From Earth, this belt is viewed at an inclination of roughly 25° to the line of sight. Dust and possibly water ice from this belt migrates inward because of drag from the stellar wind and a process by which stellar radiation causes dust grains to slowly spiral toward Epsilon Eridani, known as the Poynting–Robertson effect. At the same time, these dust particles can be destroyed through mutual collisions. The time scale for all of the dust in the disk to be cleared away by these processes is less than Epsilon Eridani's estimated age. Hence, the current dust disk must have been created by collisions or other effects of larger parent bodies, and the disk represents a late stage in the planet-formation process. It would have required collisions between 11 Earth masses' worth of parent bodies to have maintained the disk in its current state over its estimated age. The disk contains an estimated mass of dust equal to a sixth of the mass of the Moon, with individual dust grains exceeding 3.5 μm in size at a temperature of about 55 K. This dust is being generated by the collision of comets, which range up to 10 to 30 km in diameter and have a combined mass of 5 to 9 times that of Earth. This is similar to the estimated 10 Earth masses in the primordial Kuiper belt. The disk around Epsilon Eridani contains less than of
carbon monoxide Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
. This low level suggests a paucity of volatile-bearing comets and icy planetesimals compared to the Kuiper belt. The clumpy structure of the dust belt may be explained by gravitational perturbation from a planet, dubbed Epsilon Eridani c. The clumps in the dust occur at orbits that have an integer resonance with the orbit of the suspected planet. For example, the region of the disk that completes two orbits for every three orbits of a planet is in a 3:2
orbital resonance In celestial mechanics, orbital resonance occurs when orbiting bodies exert regular, periodic gravitational influence on each other, usually because their orbital periods are related by a ratio of small integers. Most commonly, this relationsh ...
. In computer simulations the ring morphology can be reproduced by the capture of dust particles in 5:3 and 3:2 orbital resonances with a planet that has an orbital eccentricity of about 0.3. Alternatively, the clumpiness may have been caused by collisions between
minor planet According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''mino ...
s known as
plutino In astronomy, the plutinos are a dynamical group of trans-Neptunian objects that orbit in 2:3 mean-motion resonance with Neptune. This means that for every two orbits a plutino makes, Neptune orbits three times. The dwarf planet Pluto is the l ...
s. Observations from NASA's Spitzer Space Telescope suggest that Epsilon Eridani actually has two asteroid belts and a cloud of exozodiacal dust. The latter is an analogue of the zodiacal dust that occupies the plane of the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
. One belt sits at approximately the same position as the one in the Solar System, orbiting at a distance of from Epsilon Eridani, and consists of silicate grains with a diameter of 3  μm and a combined mass of about 1018 kg. If the planet Epsilon Eridani b exists then this belt is unlikely to have had a source outside the orbit of the planet, so the dust may have been created by fragmentation and cratering of larger bodies such as asteroids. The second, denser belt, most likely also populated by asteroids, lies between the first belt and the outer comet disk. The structure of the belts and the dust disk suggests that more than two planets in the Epsilon Eridani system are needed to maintain this configuration. In an alternative scenario, the exozodiacal dust may be generated in an outer belt that is orbiting between 55 and 90 AU from Epsilon Eridani and has an assumed mass of 10−3 times the mass of Earth. This dust is then transported inward past the orbit of Epsilon Eridani b. When collisions between the dust grains are taken into account, the dust will reproduce the observed infrared spectrum and brightness. Outside the radius of ice sublimation, located beyond 10 AU from Epsilon Eridani where the temperatures fall below 100 K, the best fit to the observations occurs when a mix of ice and silicate dust is assumed. Inside this radius, the dust must consist of silicate grains that lack volatiles. The inner region around Epsilon Eridani, from a radius of 2.5 AU inward, appears to be clear of dust down to the detection limit of the 6.5 m MMT telescope. Grains of dust in this region are efficiently removed by drag from the stellar wind, while the presence of a planetary system may also help keep this area clear of debris. Still, this does not preclude the possibility that an inner asteroid belt may be present with a combined mass no greater than the asteroid belt in the Solar System.


Long-period planets

As one of the nearest Sun-like stars, Epsilon Eridani has been the target of many attempts to search for planetary companions. Its chromospheric activity and variability mean that finding planets with the radial velocity method is difficult, because the stellar activity may create signals that mimic the presence of planets. Searches for exoplanets around Epsilon Eridani with direct imaging have been unsuccessful. Infrared observation has shown there are no bodies of three or more
Jupiter mass Jupiter mass, also called Jovian mass, is the unit of mass equal to the total mass of the planet Jupiter. This value may refer to the mass of the planet alone, or the mass of the entire Jovian system to include the moons of Jupiter. Jupiter is by ...
es in this system, out to at least a distance of 500 AU from the host star. Planets with similar masses and temperatures as Jupiter should be detectable by Spitzer at distances beyond 80 AU. One roughly Jupiter-sized long-period planet was detected by both the radial velocity and the astrometry velocity methods, but has not yet been fully characterized by the latter as of 2021. Planets more than 150% as massive as Jupiter can be ruled out at the inner edge of the debris disk at 30–35 AU.


Planet b (AEgir)

Referred to as Epsilon Eridani b, this planet was announced in 2000, but the discovery has remained controversial. A comprehensive study in 2008 called the detection "tentative" and described the proposed planet as "long suspected but still unconfirmed". Many astronomers believed the evidence is sufficiently compelling that they regard the discovery as confirmed. The discovery was questioned in 2013 because a search program at
La Silla Observatory La Silla Observatory is an astronomical observatory in Chile with three telescopes built and operated by the European Southern Observatory (ESO). Several other telescopes are located at the site and are partly maintained by ESO. The observatory is ...
did not confirm it exists. , both the
Extrasolar Planets Encyclopaedia The Extrasolar Planets Encyclopaedia is an astronomy website, founded in Paris, France at the Meudon Observatory by Jean Schneider in February 1995, which maintains a database of all the currently known and candidate extrasolar planets, with in ...
and the NASA Exoplanet Archive list the planet as 'confirmed'. Published sources remain in disagreement as to the proposed planet's basic parameters. Values for its orbital period range from 6.85 to 7.2 years. Estimates of the size of its elliptical orbit—the semimajor axis—range from 3.38 AU to 3.50 AU and approximations of its orbital eccentricity range from to . If the planet exists, its mass remains unknown, but a lower limit can be estimated based on the orbital displacement of Epsilon Eridani. Only the component of the displacement along the line of sight to Earth is known, which yields a value for the formula ''m'' sin ''i'', where ''m'' is the mass of the planet and ''i'' is the orbital inclination. Estimates for the value of range from 0.60
Jupiter mass Jupiter mass, also called Jovian mass, is the unit of mass equal to the total mass of the planet Jupiter. This value may refer to the mass of the planet alone, or the mass of the entire Jovian system to include the moons of Jupiter. Jupiter is by ...
es to 1.06 Jupiter masses, which sets the lower limit for the mass of the planet (because the sine function has a maximum value of 1). Taking in the middle of that range at 0.78, and estimating the inclination at 30°, this yields a value of Jupiter masses for the planet's mass. Of all the measured parameters for this planet, the value for orbital eccentricity is the most uncertain. The eccentricity of 0.7 suggested by some observers is inconsistent with the presence of the proposed asteroid belt at a distance of 3 AU. If the eccentricity was this high, the planet would pass through the asteroid belt and clear it out within about ten thousand years. If the belt has existed for longer than this period, which appears likely, it imposes an upper limit on Epsilon Eridani b's eccentricity of about 0.10–0.15. If the dust disk is instead being generated from the outer debris disk, rather than from collisions in an asteroid belt, then no constraints on the planet's orbital eccentricity are needed to explain the dust distribution.


Planet c

Computer simulations of the dusty disk orbiting Epsilon Eridani suggest that the shape of the disk may be explained by the presence of a second planet, tentatively dubbed Epsilon Eridani c. Clumping in the dust disk may occur because dust particles are being trapped in orbits that have
resonant Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscilla ...
orbital periods with a planet in an eccentric orbit. The postulated Epsilon Eridani c would orbit at a distance of 40 AU, with an eccentricity of 0.3 and a period of 280 years. The inner cavity of the disk may be explained by the presence of additional planets. Current models of planet formation cannot easily explain how a planet could have been created at this distance from Epsilon Eridani. The disk is expected to have dissipated long before a giant planet could have formed. Instead, the planet may have formed at an orbital distance of about 10 AU, then migrated outward because of gravitational interaction with the disc or with other planets in the system.


Potential habitability

Epsilon Eridani is a target for planet finding programs because it has properties that allow an Earth-like planet to form. Although this system was not chosen as a primary candidate for the now-canceled
Terrestrial Planet Finder The Terrestrial Planet Finder (TPF) was a proposed project by NASA to construct a system of space telescopes for detecting extrasolar terrestrial planets. TPF was postponed several times and finally cancelled in 2011. There were two telescope ...
, it was a target star for NASA's proposed Space Interferometry Mission to search for Earth-sized planets. The proximity, Sun-like properties and suspected planets of Epsilon Eridani have also made it the subject of multiple studies on whether an
interstellar probe An interstellar probe is a space probe that has left—or is expected to leave—the Solar System and enter interstellar space, which is typically defined as the region beyond the heliopause. It also refers to probes capable of reaching other s ...
can be sent to Epsilon Eridani. The orbital radius at which the stellar flux from Epsilon Eridani matches the solar constant—where the emission matches the Sun's output at the orbital distance of the Earth—is 0.61 astronomical units (AU). That is within the maximum
habitable zone In astronomy and astrobiology, the circumstellar habitable zone (CHZ), or simply the habitable zone, is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure.J. F. Kast ...
of a conjectured Earth-like planet orbiting Epsilon Eridani, which currently stretches from about 0.5 to 1.0 AU. As Epsilon Eridani ages over a period of 20 billion years, the net luminosity will increase, causing this zone to slowly expand outward to about 0.6–1.4 AU. The presence of a large planet with a highly
elliptical orbit In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, i ...
in proximity to Epsilon Eridani's habitable zone reduces the likelihood of a
terrestrial planet A terrestrial planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the Sun: Mercury, ...
having a stable orbit within the habitable zone. A young star such as Epsilon Eridani can produce large amounts of
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
radiation that may be harmful to life, but on the other hand it is a cooler star than our Sun and so produces less ultraviolet radiation to start with. The orbital radius where the UV flux matches that on the early Earth lies at just under 0.5 AU. Because that is actually slightly closer to the star than the habitable zone, this has led some researchers to conclude there is not enough energy from ultraviolet radiation reaching into the habitable zone for life to ever get started around the young Epsilon Eridani.


See also

*
List of multiplanetary systems From the total of stars known to have exoplanets (as of ), there are a total of known multiplanetary systems, or stars with at least two confirmed planets, beyond the Solar System. This list includes systems with at least three confirmed planet ...
*
Lists of planets The following are lists of planets. __NOTOC__ In the Solar System *For a list of geophysical planets in the Solar System, see: List of gravitationally rounded objects of the Solar System This also includes a list of the eight planets according t ...
*
List of nearest stars and brown dwarfs This list covers all known stars, brown dwarfs, and sub-brown dwarfs within of the Sun. So far, 131 such objects have been found, of which only 22 are bright enough to be visible without a telescope. The visible light needs to reach or exce ...


Notes


References


External links

* * * * {{DEFAULTSORT:Epsilon Eridani K-type main-sequence stars Eridani, Epsilon BY Draconis variables Planetary systems with one confirmed planet Circumstellar disks Ursa Major Moving Group Local Bubble Ran 50 Eridanus (constellation) Eridani, Epsilon Durchmusterung objects Eridani, 18 0144 022049 016537 1084