Effective field theory
   HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
, an effective field theory is a type of approximation, or
effective theory In science, an effective theory is a scientific theory which proposes to describe a certain set of observations, but explicitly without the claim or implication that the mechanism employed in the theory has a direct counterpart in the actual causes ...
, for an underlying physical theory, such as a
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
or a statistical mechanics model. An effective field theory includes the appropriate
degrees of freedom Degrees of freedom (often abbreviated df or DOF) refers to the number of independent variables or parameters of a thermodynamic system. In various scientific fields, the word "freedom" is used to describe the limits to which physical movement or ...
to describe physical phenomena occurring at a chosen
length scale In physics, length scale is a particular length or distance determined with the precision of at most a few orders of magnitude. The concept of length scale is particularly important because physical phenomena of different length scales cannot ...
or energy scale, while ignoring substructure and degrees of freedom at shorter distances (or, equivalently, at higher energies). Intuitively, one averages over the behavior of the underlying theory at shorter length scales to derive what is hoped to be a simplified model at longer length scales. Effective field theories typically work best when there is a large separation between length scale of interest and the length scale of the underlying dynamics. Effective field theories have found use in
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
, statistical mechanics, condensed matter physics,
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, and
hydrodynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) a ...
. They simplify calculations, and allow treatment of dissipation and
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
effects.


The renormalization group

Presently, effective field theories are discussed in the context of the
renormalization group In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in t ...
(RG) where the process of ''integrating out'' short distance degrees of freedom is made systematic. Although this method is not sufficiently concrete to allow the actual construction of effective field theories, the gross understanding of their usefulness becomes clear through an RG analysis. This method also lends credence to the main technique of constructing effective field theories, through the analysis of symmetries. If there is a single mass scale M in the ''microscopic'' theory, then the effective field theory can be seen as an expansion in 1/M. The construction of an effective field theory accurate to some power of 1/M requires a new set of free parameters at each order of the expansion in 1/M. This technique is useful for
scattering Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including ...
or other processes where the maximum momentum scale k satisfies the condition k/M≪1. Since effective field theories are not valid at small length scales, they need not be renormalizable. Indeed, the ever expanding number of parameters at each order in 1/M required for an effective field theory means that they are generally not renormalizable in the same sense as quantum electrodynamics which requires only the renormalization of two parameters.


Examples of effective field theories


Fermi theory of beta decay

The best-known example of an effective field theory is the Fermi theory of beta decay. This theory was developed during the early study of weak decays of nuclei when only the
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ...
s and leptons undergoing weak decay were known. The typical
reactions Reaction may refer to a process or to a response to an action, event, or exposure: Physics and chemistry *Chemical reaction *Nuclear reaction * Reaction (physics), as defined by Newton's third law *Chain reaction (disambiguation). Biology and m ...
studied were: :: \begin n & \to p+e^-+\overline\nu_e \\ \mu^- & \to e^-+\overline\nu_e+\nu_\mu. \end This theory posited a pointlike interaction between the four
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
s involved in these reactions. The theory had great phenomenological success and was eventually understood to arise from the
gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations ( Lie grou ...
of electroweak interactions, which forms a part of the
standard model The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It ...
of particle physics. In this more fundamental theory, the interactions are mediated by a flavour-changing
gauge boson In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles, whose interactions are described by a gauge theory, interact with each other by the exchange of ga ...
, the W±. The immense success of the Fermi theory was because the W particle has mass of about 80 GeV, whereas the early experiments were all done at an energy scale of less than 10 MeV. Such a separation of scales, by over 3 orders of magnitude, has not been met in any other situation as yet.


BCS theory of superconductivity

Another famous example is the BCS theory of
superconductivity Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
. Here the underlying theory is the theory of
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s in a
metal A metal (from ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, e ...
interacting with lattice vibrations called
phonon In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechani ...
s. The phonons cause attractive interactions between some electrons, causing them to form Cooper pairs. The length scale of these pairs is much larger than the wavelength of phonons, making it possible to neglect the dynamics of phonons and construct a theory in which two electrons effectively interact at a point. This theory has had remarkable success in describing and predicting the results of experiments on superconductivity.


Effective field theories in gravity

General relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
itself is expected to be the low energy effective field theory of a full theory of quantum gravity, such as
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
or Loop Quantum Gravity. The expansion scale is the Planck mass. Effective field theories have also been used to simplify problems in General Relativity, in particular in calculating the gravitational wave signature of inspiralling finite-sized objects. The most common EFT in GR is " Non-Relativistic General Relativity" (NRGR), which is similar to the
post-Newtonian expansion In general relativity, the post-Newtonian expansions (PN expansions) are used for finding an approximate solution of the Einstein field equations for the metric tensor. The approximations are expanded in small parameters which express orders of ...
. Another common GR EFT is the Extreme Mass Ratio (EMR), which in the context of the inspiralling problem is called EMRI.


Other examples

Presently, effective field theories are written for many situations. *One major branch of
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies t ...
is
quantum hadrodynamics Quantum hadrodynamics is an effective field theory pertaining to interactions between hadrons, that is, hadron-hadron interactions or the inter-hadron force. It is "a framework for describing the nuclear many-body problem as a relativistic system ...
, where the interactions of
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ...
s are treated as a field theory, which should be derivable from the underlying theory of
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type ...
. Quantum hadrodynamics is the theory of the nuclear force, similarly to quantum chromodynamics being the theory of the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
and quantum electrodynamics being the theory of the electromagnetic force. Due to the smaller separation of length scales here, this effective theory has some classificatory power, but not the spectacular success of the Fermi theory. *In
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
the effective field theory of
QCD In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type o ...
called
chiral perturbation theory Chiral perturbation theory (ChPT) is an effective field theory constructed with a Lagrangian consistent with the (approximate) chiral symmetry of quantum chromodynamics (QCD), as well as the other symmetries of parity and charge conjugation.
has had better success. This theory deals with the interactions of
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ...
s with pions or kaons, which are the
Goldstone boson In particle and condensed matter physics, Goldstone bosons or Nambu–Goldstone bosons (NGBs) are bosons that appear necessarily in models exhibiting spontaneous breakdown of continuous symmetries. They were discovered by Yoichiro Nambu in part ...
s of spontaneous chiral symmetry breaking. The expansion parameter is the pion energy/momentum. *For
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ...
s containing one heavy
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly ...
(such as the bottom or
charm Charm may refer to: Social science * Charisma, a person or thing's pronounced ability to attract others * Superficial charm, flattery, telling people what they want to hear Science and technology * Charm quark, a type of elementary particle * Ch ...
), an effective field theory which expands in powers of the quark mass, called the
heavy quark effective theory In quantum chromodynamics, heavy quark effective theory (HQET) is an effective field theory describing the physics of heavy (that is, of mass far greater than the QCD scale) quarks. It is used in studying the properties of hadrons containing a sin ...
(HQET), has been found useful. *For
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ...
s containing two heavy quarks, an effective field theory which expands in powers of the relative velocity of the heavy quarks, called non-relativistic QCD (NRQCD), has been found useful, especially when used in conjunctions with lattice QCD. *For
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ...
reactions with light energetic ( collinear) particles, the interactions with low-energetic (soft) degrees of freedom are described by the
soft-collinear effective theory In quantum field theory, soft-collinear effective theory (or SCET) is a theoretical framework for doing calculations that involve interacting particles carrying widely different energies. The motivation for developing SCET was to control the infra ...
(SCET). *Much of condensed matter physics consists of writing effective field theories for the particular property of matter being studied. *
Hydrodynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) a ...
can also be treated using Effective Field Theories


See also

* Form factor (quantum field theory) *
Renormalization group In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in t ...
*
Quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
* Quantum triviality * Ginzburg–Landau theory


References


Books

* A.A. Petrov and A. Blechman, ‘’Effective Field Theories,’’ Singapore: World Scientific (2016). * C.P. Burgess, ‘’Introduction to Effective Field Theory,‘’ Cambridge University Press (2020).


External links

* * *
Effective field theory
(Interactions, Symmetry Breaking and Effective Fields - from Quarks to Nuclei. an Internet Lecture by Jacek Dobaczewski) {{Industrial and applied mathematics Quantum field theory Statistical mechanics Renormalization group Chemical physics Nuclear physics Condensed matter physics