Earth's orbit
   HOME

TheInfoList



OR:

Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
orbit In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an ...
s the Sun at an average distance of , or 8.317 light-minutes, in a counterclockwise direction as viewed from above the
Northern Hemisphere The Northern Hemisphere is the half of Earth that is north of the equator. For other planets in the Solar System, north is defined by humans as being in the same celestial sphere, celestial hemisphere relative to the invariable plane of the Solar ...
. One complete orbit takes  days (1 sidereal year), during which time Earth has traveled . Jean Meeus, ''Astronomical Algorithms'' 2nd ed, (Richmond, VA: Willmann-Bell, 1998) 238. See Ellipse#Circumference. The formula by Ramanujan is accurate enough. Ignoring the influence of other
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
bodies, Earth's orbit, also called Earth's revolution, is an
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
with the Earth–Sun barycenter as one focus with a current
eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g ...
of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun (relative to the size of the orbit). As seen from Earth, the planet's orbital
prograde motion Retrograde motion in astronomy is, in general, orbital or rotational motion of an object in the direction opposite the rotation of its primary, that is, the central object (right figure). It may also describe other motions such as precession or ...
makes the Sun appear to move with respect to other stars at a rate of about 1° eastward per solar day (or a Sun or Moon diameter every 12 hours).Our planet takes about 365 days to orbit the Sun. A full orbit has 360°. That fact demonstrates that each day, Earth travels roughly 1° in its orbit. Thus, the Sun will appear to move across the sky relative to the stars by that same amount. Earth's
orbital speed In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or ...
averages , which is fast enough to cover the planet's diameter in 7 minutes and the distance to the
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
in 4 hours. The point towards which the Earth in its solar orbit is directed at any given instant is known as the "apex of the Earth's way". From a vantage point above the north pole of either the Sun or Earth, Earth would appear to revolve in a counterclockwise direction around the Sun. From the same vantage point, both the Earth and the Sun would appear to rotate also in a counterclockwise direction.


History of study

Heliocentrism Heliocentrism (also known as the heliocentric model) is a superseded astronomical model in which the Earth and planets orbit around the Sun at the center of the universe. Historically, heliocentrism was opposed to geocentrism, which placed t ...
is the scientific model that first placed the Sun at the center of the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
and put the planets, including Earth, in its orbit. Historically, heliocentrism is opposed to
geocentrism In astronomy, the geocentric model (also known as geocentrism, often exemplified specifically by the Ptolemaic system) is a superseded description of the Universe with Earth at the center. Under most geocentric models, the Sun, Moon, stars, a ...
, which placed the Earth at the center.
Aristarchus of Samos Aristarchus of Samos (; , ; ) was an ancient Greek astronomer and mathematician who presented the first known heliocentric model that placed the Sun at the center of the universe, with the Earth revolving around the Sun once a year and rotati ...
already proposed a heliocentric model in the third century BC. In the sixteenth century,
Nicolaus Copernicus Nicolaus Copernicus (19 February 1473 – 24 May 1543) was a Renaissance polymath who formulated a mathematical model, model of Celestial spheres#Renaissance, the universe that placed heliocentrism, the Sun rather than Earth at its cen ...
' '' De revolutionibus'' presented a full discussion of a heliocentric model of the universe in much the same way as
Ptolemy Claudius Ptolemy (; , ; ; – 160s/170s AD) was a Greco-Roman mathematician, astronomer, astrologer, geographer, and music theorist who wrote about a dozen scientific treatises, three of which were important to later Byzantine science, Byzant ...
had presented his geocentric model in the second century. This " Copernican Revolution" resolved the issue of planetary
retrograde motion Retrograde motion in astronomy is, in general, orbital or rotational motion of an object in the direction opposite the rotation of its primary, that is, the central object (right figure). It may also describe other motions such as precession ...
by arguing that such motion was only perceived and apparent. According to historian Jerry Brotton, "Although Copernicus's groundbreaking book ... had been rinted more thana century earlier, he Dutch mapmaker Joan Blaeu was the first mapmaker to incorporate his revolutionary heliocentric theory into a map of the world."


Influence on Earth

Because of Earth's
axial tilt In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orbita ...
(often known as the obliquity of the
ecliptic The ecliptic or ecliptic plane is the orbital plane of Earth's orbit, Earth around the Sun. It was a central concept in a number of ancient sciences, providing the framework for key measurements in astronomy, astrology and calendar-making. Fr ...
), the inclination of the Sun's trajectory in the sky (as seen by an observer on Earth's surface) varies over the course of the year. For an observer at a northern latitude, when the north pole is tilted toward the Sun the day lasts longer and the Sun appears higher in the sky. This results in warmer average temperatures, as additional solar radiation reaches the surface. When the north pole is tilted away from the Sun, the reverse is true and the weather is generally cooler. North of the
Arctic Circle The Arctic Circle is one of the two polar circles, and the northernmost of the five major circle of latitude, circles of latitude as shown on maps of Earth at about 66° 34' N. Its southern counterpart is the Antarctic Circle. The Arctic Circl ...
and south of the Antarctic Circle, an extreme case is reached in which there is no daylight at all for part of the year, and continuous daylight during the opposite time of year. This is called
polar night Polar night is a phenomenon that occurs in the polar regions of Earth, northernmost and southernmost regions of Earth when the Sun remains below the horizon for more than 24 hours. This only occurs inside the polar circles. The opposite phen ...
and
midnight sun Midnight sun, also known as polar day, is a natural phenomenon that occurs in the summer months in places north of the Arctic Circle or south of the Antarctic Circle, when the Sun remains visible at the local midnight. When midnight sun is see ...
, respectively. This variation in the weather (because of the direction of the Earth's axial tilt) results in the
season A season is a division of the year based on changes in weather, ecology, and the number of daylight hours in a given region. On Earth, seasons are the result of the axial parallelism of Earth's axial tilt, tilted orbit around the Sun. In temperat ...
s.


Events in the orbit

By astronomical convention, the four seasons are determined by the
solstice A solstice is the time when the Sun reaches its most northerly or southerly sun path, excursion relative to the celestial equator on the celestial sphere. Two solstices occur annually, around 20–22 June and 20–22 December. In many countries ...
s (the two points in the Earth's orbit of the maximum tilt of the Earth's axis, toward the Sun or away from the Sun) and the
equinox A solar equinox is a moment in time when the Sun appears directly above the equator, rather than to its north or south. On the day of the equinox, the Sun appears to rise directly east and set directly west. This occurs twice each year, arou ...
es (the two points in the Earth's orbit where the Earth's tilted axis and an imaginary line drawn from the Earth to the Sun are exactly perpendicular to one another). The solstices and equinoxes divide the year up into four approximately equal parts. In the northern hemisphere
winter solstice The winter solstice, or hibernal solstice, occurs when either of Earth's geographical pole, poles reaches its maximum axial tilt, tilt away from the Sun. This happens twice yearly, once in each hemisphere (Northern Hemisphere, Northern and So ...
occurs on or about December 21; summer solstice is near June 21; spring equinox is around March 20, and autumnal equinox is about September 23. The effect of the Earth's axial tilt in the southern hemisphere is the opposite of that in the northern hemisphere, thus the seasons of the solstices and equinoxes in the southern hemisphere are the reverse of those in the northern hemisphere (e.g. the northern summer solstice is at the same time as the southern winter solstice). In modern times, Earth's
perihelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
occurs around January 3, and the
aphelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
around July 4. In other words, the Earth is closer to the Sun in January, and further away in July, which might seem counter-intuitive to those residing in the northern hemisphere, where it is colder when the Earth is closest to the sun and warmer when it is furthest away. The changing Earth-Sun distance results in an increase of about 7% in total solar energy reaching the Earth at perihelion relative to aphelion. Since the southern hemisphere is tilted toward the Sun at about the same time that the Earth reaches the closest approach to the Sun, the southern hemisphere receives slightly more energy from the Sun than does the northern over the course of a year. However, this effect is much less significant than the total energy change due to the axial tilt, and most of the excess energy is absorbed by the higher proportion of surface covered by water in the southern hemisphere. The
Hill sphere The Hill sphere is a common model for the calculation of a Sphere of influence (astrodynamics), gravitational sphere of influence. It is the most commonly used model to calculate the spatial extent of gravitational influence of an astronomical ...
( gravitational sphere of influence) of the Earth is about 1,500,000
kilometer The kilometre ( SI symbol: km; or ), spelt kilometer in American and Philippine English, is a unit of length in the International System of Units (SI), equal to one thousand metres (kilo- being the SI prefix for ). It is the preferred mea ...
s (0.01 AU) in radius, or approximately four times the average distance to the Moon.For the Earth, the Hill radius is :R_H = a \left(\frac\right)^, where ''m'' is the mass of the Earth, ''a'' is an astronomical unit, and ''M'' is the mass of the Sun. So the radius in AU is about \left(\frac\right)^ \approx 0.01. This is the maximal distance at which the Earth's gravitational influence is stronger than the more distant Sun and planets. Objects orbiting the Earth must be within this radius, otherwise, they may become unbound by the gravitational perturbation of the Sun. The following diagram illustrates the positions and relationship between the lines of solstices, equinoxes, and apsides of Earth's elliptical orbit. The six Earth images are positions along the orbital ellipse, which are sequentially the perihelion (periapsis—nearest point to the Sun) on anywhere from January 2 to January 5, the point of March equinox on March 19, 20, or 21, the point of June solstice on June 20, 21, or 22, the aphelion (apoapsis—the farthest point from the Sun) on anywhere from July 3 to July 5, the September equinox on September 22, 23, or 24, and the December solstice on December 21, 22, or 23.


Future

Mathematicians and astronomers (such as Laplace,
Lagrange Joseph-Louis Lagrange (born Giuseppe Luigi LagrangiaGauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, Geodesy, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observat ...
,
Poincaré Poincaré is a French surname. Notable people with the surname include: * Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philos ...
, Kolmogorov, Vladimir Arnold, and Jürgen Moser) have searched for evidence for the stability of the planetary motions, and this quest led to many mathematical developments and several successive "proofs" of stability for the Solar System. By most predictions, Earth's orbit will be relatively stable over long periods. In 1989, Jacques Laskar's work indicated that Earth's orbit (as well as the orbits of all the inner planets) can become chaotic and that an error as small as 15 meters in measuring the initial position of the Earth today would make it impossible to predict where Earth would be in its orbit in just over 100 million years' time. Modeling the Solar System is a subject covered by the
n-body problem In physics, the -body problem is the problem of predicting the individual motions of a group of astronomical object, celestial objects interacting with each other gravitationally.Leimanis and Minorsky: Our interest is with Leimanis, who first d ...
.


See also

* Earth phase *
Earth's rotation Earth's rotation or Earth's spin is the rotation of planet Earth around its own Rotation around a fixed axis, axis, as well as changes in the orientation (geometry), orientation of the rotation axis in space. Earth rotates eastward, in progra ...
* Spaceship Earth *
Calendar A calendar is a system of organizing days. This is done by giving names to periods of time, typically days, weeks, months and years. A calendar date, date is the designation of a single and specific day within such a system. A calendar is ...


Notes


References


External links


Earth – Speed through space – about 1 million miles an hour
nbsp;–
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
& ( WP discussion) {{DEFAULTSORT:Earth's Orbit
Orbit In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an ...
Dynamics of the Solar System Geodesy