Earth's field NMR
   HOME

TheInfoList



OR:

Nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
(NMR) in the geomagnetic field is conventionally referred to as Earth's field NMR (EFNMR). EFNMR is a special case of
low field NMR Low field NMR spans a range of different nuclear magnetic resonance (NMR) modalities, going from NMR conducted in permanent magnets, supporting magnetic fields of a few tesla (unit), tesla (T), all the way down to zero field NMR, where the Earth's ...
. When a sample is placed in a constant magnetic field and stimulated (perturbed) by a time-varying (e.g., pulsed or alternating) magnetic field, NMR active nuclei resonate at characteristic frequencies. Examples of such NMR active nuclei are the
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
s
carbon-13 Carbon-13 (13C) is a natural, stable isotope of carbon with a nucleus containing six protons and seven neutrons. As one of the environmental isotopes, it makes up about 1.1% of all natural carbon on Earth. Detection by mass spectrometry A mas ...
and
hydrogen-1 Hydrogen (1H) has three naturally occurring isotopes, sometimes denoted , , and . and are stable, while has a half-life of years. Heavier isotopes also exist, all of which are synthetic and have a half-life of less than one zeptosecond (10∠...
(which in NMR is conventionally known as
proton NMR Proton nuclear magnetic resonance (proton NMR, hydrogen-1 NMR, or 1H NMR) is the application of nuclear magnetic resonance in NMR spectroscopy with respect to hydrogen-1 nuclei within the molecules of a substance, in order to determine the struct ...
). The resonant frequency of each isotope is directly proportional to the strength of the applied magnetic field, and the magnetogyric or gyromagnetic ratio of that isotope. The signal strength is proportional both to the stimulating magnetic field and the number of nuclei of that isotope in the sample. Thus in the 21 tesla magnetic field that may be found in high resolution laboratory NMR spectrometers, protons resonate at 900 MHz. However, in the Earth's magnetic field the same nuclei resonate at audio frequencies of around 2 kHz and generate very weak signals. The location of a nucleus within a complex molecule affects the 'chemical environment' (i.e. the rotating magnetic fields generated by the other nuclei) experienced by the nucleus. Thus different
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ...
molecules containing NMR active nuclei in different positions within the molecules produce slightly different patterns of resonant frequencies. EFNMR signals can be affected by both magnetically noisy laboratory environments and natural variations in the Earth's field, which originally compromised its usefulness. However this disadvantage has been overcome by the introduction of electronic equipment which compensates changes in ambient magnetic fields. Whereas
chemical shift In nuclear magnetic resonance (NMR) spectroscopy, the chemical shift is the resonant frequency of an atomic nucleus relative to a standard in a magnetic field. Often the position and number of chemical shifts are diagnostic of the structure o ...
s are important in NMR, they are insignificant in the Earth's field. The absence of chemical shifts causes features such as spin-spin multiplets (that are separated by high fields) to be superimposed in EFNMR. Instead, EFNMR spectra are dominated by spin-spin coupling (
J-coupling In nuclear chemistry and nuclear physics, ''J''-couplings (also called spin-spin coupling or indirect dipole–dipole coupling) are mediated through chemical bonds connecting two spins. It is an indirect interaction between two nuclear spins that ...
) effects. Software optimised for analysing these spectra can provide useful information about the structure of the molecules in the sample.


Applications

Applications of EFNMR include: * Proton precession magnetometers (PPM) or
proton magnetometer A proton magnetometer, also known as a proton precession magnetometer (PPM), uses the principle of Earth's field nuclear magnetic resonance (EFNMR) to measure very small variations in the Earth's magnetic field, allowing ferrous objects on land ...
s, which produce magnetic resonance in a known sample in the magnetic field to be measured, measure the sample's resonant frequency, then calculate and display the field strength. * EFNMR spectrometers, which use the principle of
NMR spectroscopy Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. The sample is placed in a magnetic fie ...
to analyse molecular structures in a variety of applications, from investigating the structure of ice crystals in polar ice-fields, to rocks and hydrocarbons on-site. * Earth's field
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves ...
scanners, which use the principle of magnetic resonance imaging. The advantages of the Earth's field instruments over conventional (high field strength) instruments include the portability of the equipment giving the ability to analyse substances on-site, and their lower cost. The much lower geomagnetic field strength, that would otherwise result in poor signal-to-noise ratios, is compensated by homogeneity of the Earth's field giving the ability to use much larger samples. Their relatively low cost and simplicity make them good educational tools. Although those commercial EFNMR spectrometers and MRI instruments aimed at universities etc. are necessarily sophisticated and are too costly for most hobbyists, internet search engines find data and designs for basic proton precession magnetometers which claim to be within the capability of reasonably competent electronic hobbyists or undergraduate students to build from readily available components costing no more than a few tens of US dollars.


Mode of operation

Free Induction Decay In Fourier transform nuclear magnetic resonance spectroscopy, free induction decay (FID) is the observable NMR signal generated by non-equilibrium nuclear spin magnetization precessing about the magnetic field (conventionally along z). This non-e ...
(FID) is the magnetic resonance due to
Larmor precession In physics, Larmor precession (named after Joseph Larmor) is the precession of the magnetic moment of an object about an external magnetic field. The phenomenon is conceptually similar to the precession of a tilted classical gyroscope in an extern ...
that results from the stimulation of nuclei by means of either a ''pulsed dc magnetic field'' or a ''pulsed resonant frequency (rf) magnetic field'', somewhat analogous respectively to the effects of plucking or bowing a stringed instrument. Whereas a pulsed rf field is usual in conventional (high field) NMR spectrometers, the pulsed dc polarising field method of stimulating FID is usual in EFNMR spectrometers and PPMs. EFNMR equipment typically incorporates several coils, for stimulating the samples and for sensing the resulting NMR signals. Signal levels are very low, and specialised electronic amplifiers are required to amplify the EFNMR signals to usable levels. The stronger the polarising magnetic field, the stronger the EFNMR signals and the better the signal-to-noise ratios. The main trade-offs are performance versus portability and cost. Since the FID resonant frequencies of NMR active nuclei are directly proportional to the magnetic field affecting those nuclei, we can use widely available NMR spectroscopy data to analyse suitable substances in the
Earth's magnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic ...
. An important feature of EFNMR compared with high-field NMR is that some aspects of molecular structure can be observed more clearly at low fields and low frequencies, whereas other features observable at high fields may not be observable at low fields. This is because: * Electron-mediated heteronuclear J-couplings (
spin-spin coupling In quantum mechanics, the procedure of constructing eigenstates of total angular momentum out of eigenstates of separate angular momenta is called angular momentum coupling. For instance, the orbit and spin of a single particle can interact t ...
s) are field independent, producing clusters of two or more frequencies separated by several Hz, which are more easily observed in a fundamental resonance of about 2 kHz. "Indeed it appears that enhanced resolution is possible due to the long spin relaxation times and high field homogeneity which prevail in EFNMR." *
Chemical shift In nuclear magnetic resonance (NMR) spectroscopy, the chemical shift is the resonant frequency of an atomic nucleus relative to a standard in a magnetic field. Often the position and number of chemical shifts are diagnostic of the structure o ...
s of several parts per million (ppm) are clearly separated in high field NMR spectra, but have separations of only a few milliherz at proton EFNMR frequencies, and so are undetectable in an experiment that takes place on a timescale of tenths of a second. For more context and explanation of NMR principles, please refer to the main articles on
NMR Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with ...
and
NMR spectroscopy Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. The sample is placed in a magnetic fie ...
. For more detail see
proton NMR Proton nuclear magnetic resonance (proton NMR, hydrogen-1 NMR, or 1H NMR) is the application of nuclear magnetic resonance in NMR spectroscopy with respect to hydrogen-1 nuclei within the molecules of a substance, in order to determine the struct ...
and carbon-13 NMR.


Proton EFNMR frequencies

The geomagnetic field strength and hence precession frequency varies with location and time. : Larmor precession frequency =
magnetogyric ratio In physics, the gyromagnetic ratio (also sometimes known as the magnetogyric ratio in other disciplines) of a particle or system is the ratio of its magnetic moment to its angular momentum, and it is often denoted by the symbol Gamma, , gamma. Its ...
x magnetic field : Proton magnetogyric ratio = 42.576 Hz/μT (also written 42.576 MHz/T or 0.042576 Hz/nT) : Earth's magnetic field: 30 μT near Equator to 60 μT near Poles, around 50 μT at mid-latitudes. Thus proton (hydrogen nucleus) EFNMR frequencies are
audio frequencies An audio frequency or audible frequency (AF) is a periodic function, periodic vibration whose frequency is human hearing range, audible to the average human. The International System of Units, SI unit of frequency is the hertz (Hz). It is the pr ...
of about 1.3 kHz near the Equator to 2.5 kHz near the Poles, around 2 kHz being typical of mid-latitudes. In terms of the
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging fro ...
EFNMR frequencies are in the
VLF Very low frequency or VLF is the ITU designation for radio frequencies (RF) in the range of 3–30  kHz, corresponding to wavelengths from 100 to 10 km, respectively. The band is also known as the myriameter band or myriameter wave a ...
and
ULF Ulf, or Ulv is a masculine name common in Scandinavia and Germany. It derives from the Old Norse word for "wolf" (''úlfr'', see Wulf). The oldest written record of the name's occurrence in Sweden is from a runestone of the 11th century. The fe ...
radio frequency Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the ...
bands, and the audio-magnetotelluric (AMT) frequencies of
geophysics Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' so ...
. Examples of molecules containing hydrogen nuclei useful in proton EFNMR are
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
,
hydrocarbons In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or e ...
such as
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbo ...
and
petroleum Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name ''petroleum'' covers both naturally occurring unprocessed crud ...
, and carbohydrates such as occur in
plants Plants are predominantly photosynthetic eukaryotes of the kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all current definitions of Plantae exclude ...
and
animals Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and go through an ontogenetic stage in ...
.


See also

* Rate of change of Earth's magnetic field *
Zero field NMR Zero- to ultralow-field (ZULF) NMR is the acquisition of nuclear magnetic resonance (NMR) spectra of chemicals with magnetically active nuclei ( spins 1/2 and greater) in an environment carefully screened from magnetic fields (including from the ...


References

{{reflist


External links


TeachSpin EFNMR web site

Magritek EFNMR web site

Two dimensional EFNMR imaging

Earth's field NMR/MRI practical course, SS24 October 2009. Department of Physics, University of Oxford

NMR Using Earth’s Magnetic Field

Open source Earth's Field NMR Spectrometer

Magnetic Resonance Imaging System Based on Earth’s Magnetic Field

Applications of Earth’s Field NMR to porous systems and polymer gels
Geomagnetism Nuclear magnetic resonance