EMF measurement
   HOME

TheInfoList



OR:

EMF measurements are measurements of ambient (surrounding)
electromagnetic fields An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
that are performed using particular sensors or probes, such as EMF meters. These probes can be generally considered as ''antennas'' although with different characteristics. In fact, probes should not perturb the electromagnetic field and must prevent coupling and reflection as much as possible in order to obtain precise results. There are two main types of EMF measurements: *''broadband measurements'': performed using a broadband probe, that is a device which senses any signal across a wide range of frequencies and is usually made with three independent diode
detectors A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
; *''frequency selective measurements'': in which the measurement system consists of a field antenna and a frequency selective receiver or spectrum analyzer allowing to monitor the frequency range of interest. EMF probes may respond to fields only on one axis, or may be tri-axial, showing components of the field in three directions at once. Amplified, active, probes can improve measurement precision and sensitivity but their active components may limit their speed of response.


Ideal isotropic measurements

Measurements of the EMF are obtained using an E-field sensor or H-field sensor which can be isotropic or mono-axial, active or passive. A mono-axial, omnidirectional probe is a device which senses the Electric ( short dipole) or Magnetic field linearly polarized in a given direction. Using a mono-axial probe implies the need for three measurements taken with the sensor axis set up along three mutually orthogonal directions, in a ''X, Y, Z'' configuration. As an example, it can be used as a probe which senses the Electric field component parallel to the direction of its axis of symmetry. In these conditions, where E is the amplitude of incident electric field, and θ is the amplitude of the angle between sensor axis and direction of electric field E, the signal detected is proportional to , E, cos θ (''right''). This allows obtainment of the correct total amplitude of the field in the form of :, E, = \sqrt or, in case of the magnetic field :, H, = \sqrt An
isotropic Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence '' anisotropy''. ''Anisotropy'' is also used to describ ...
(tri-axial) probe simplifies the measurement procedure because the total field value is determined with three measures taken without changing sensor position: this results from the geometry of the device which is made by three independent broadband sensing elements placed orthogonal to each other. In practice, each element’s output is measured in three consecutive time intervals supposing field components being time stationary .


Meters

An ''EMF meter'' is a scientific instrument for measuring
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical ...
s (abbreviated as EMF). Most meters measure the
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
flux density Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ...
( DC fields) or the change in an electromagnetic field over time ( AC fields), essentially the same as a radio antenna, but with quite different detection characteristics. The two largest categories are single axis and tri-axis. Single axis meters are cheaper than tri-axis meters, but take longer to complete a survey because the meter only measures one dimension of the field. Single axis instruments have to be tilted and turned on all three axes to obtain a full measurement. A tri-axis meter measures all three axes simultaneously, but these models tend to be more expensive. Electromagnetic fields can be generated by AC or DC currents. An EMF meter can measure AC electromagnetic fields, which are usually emitted from man-made sources such as electrical wiring, while
gaussmeter A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, on ...
s or magnetometers measure DC fields, which occur naturally in Earth's
geomagnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magneti ...
and are emitted from other sources where direct current is present.


Sensitivity and Calibration

As most electromagnetic fields encountered in everyday situations are those generated by household or industrial appliances, the majority of EMF meters available are calibrated to measure 50 and 60  Hz alternating fields (the
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
of European and US
mains electricity Mains electricity or utility power, power grid, domestic power, and wall power, or in some parts of Canada as hydro, is a general-purpose alternating-current (AC) electric power supply. It is the form of electrical power that is delivered to h ...
). There are other meters which can measure fields alternating at as low as 20 Hz, however these tend to be much more expensive and are only used for specific research purposes. Calibration should be carried out by a
ISO 17025 accredited laboratory
and a calibration certificate issued accordingly to ensure that the instrument/s used to carry out EMF measurements are accurate and that measurement results are traceable.


Active and passive sensors

Active sensors are sensing devices which contain active components; usually this solution allows for a more precise measurement with respect to passive components. In fact, a passive receiving antenna collects energy from the electromagnetic field being measured and makes it available at a RF cable connector. This signal then goes to the spectrum analyzer but the field characteristics can be someway modified by the presence of the cable, especially in near-field conditions. On the other hand, an effective solution is to transfer on an optical carrier, the electric (or magnetic) field component sensed with an active probe. The basic components of the system are a receiving electro-optical antenna which is able to transfer, on an optical carrier, the individual electric (or magnetic) field component picked up and to return it in the form of an electrical signal at the output port of an opto-electric converter. The modulated optical carrier is transferred by means of a fiber-optic link to a converter which extracts the modulating signal and converts it back to an electrical signal. The electrical signal thus obtained can be then sent to a spectrum analyzer with a 50 Ω common RF cable.


Isotropic deviation

Isotropic deviation, in EMF measurements, is a parameter that describes the accuracy in measuring field intensities irrespective of the probe’s orientation. If the field is obtained by three measurements in an orthogonal ''X'', ''Y'', ''Z'' configuration in the form: :, E, = \sqrt a sufficient condition for the expression to be true for every three
orthogonal coordinates In mathematics, orthogonal coordinates are defined as a set of ''d'' coordinates q = (''q''1, ''q''2, ..., ''q'd'') in which the coordinate hypersurfaces all meet at right angles (note: superscripts are indices, not exponents). A coordinate su ...
(''X'',''Y'',''Z'') is for the probe
radiation pattern In the field of antenna design the term radiation pattern (or antenna pattern or far-field pattern) refers to the ''directional'' (angular) dependence of the strength of the radio waves from the antenna or other source.Constantine A. Balanis: “A ...
to be as close as possible to ideal short dipole pattern, called sin ''θ'': : f(\theta, \phi)= A \sin(\theta), where ''A'' is function of frequency. The difference between ideal dipole radiation pattern and real probe pattern is called ''isotropic deviation''.


References

Bibliography * {{pollution Radio frequency antenna types Environmental engineering Antennas (radio)