Dynamic topography
   HOME

TheInfoList



OR:

The term dynamic topography is used in
geodynamics Geodynamics is a subfield of geophysics dealing with dynamics of the Earth. It applies physics, chemistry and mathematics to the understanding of how mantle convection leads to plate tectonics and geologic phenomena such as seafloor spreading, mo ...
to refer the elevation differences caused by the flow within Earth's mantle.


Definition

In geodynamics, ''dynamic topography'' refers to
topography Topography is the study of the forms and features of land surfaces. The topography of an area may refer to the land forms and features themselves, or a description or depiction in maps. Topography is a field of geoscience and planetary sc ...
generated by the motion of zones of differing degrees of
buoyancy Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the ...
(convection) in
Earth's mantle Earth's mantle is a layer of silicate rock between the crust and the outer core. It has a mass of 4.01 × 1024 kg and thus makes up 67% of the mass of Earth. It has a thickness of making up about 84% of Earth's volume. It is predominantly so ...
. It is also seen as the residual topography obtained by removing the isostatic contribution from the observed topography (i.e., the topography that cannot be explained by an isostatic equilibrium of the crust or the lithosphere resting on a fluid mantle) and all observed topography due to
post-glacial rebound Post-glacial rebound (also called isostatic rebound or crustal rebound) is the rise of land masses after the removal of the huge weight of ice sheets during the last glacial period, which had caused isostatic depression. Post-glacial rebound ...
. Elevation differences due to dynamic topography are frequently on the order of a few hundred meters to a couple of kilometers. Large scale surface features due to dynamic topography are mid-ocean ridges and
oceanic trench Oceanic trenches are prominent long, narrow topographic depressions of the ocean floor. They are typically wide and below the level of the surrounding oceanic floor, but can be thousands of kilometers in length. There are about of oceanic tren ...
es. Other prominent examples include areas overlying
mantle plume A mantle plume is a proposed mechanism of convection within the Earth's mantle, hypothesized to explain anomalous volcanism. Because the plume head partially melts on reaching shallow depths, a plume is often invoked as the cause of volcanic hot ...
s such as the African superswell. The mid-ocean ridges are high due to dynamic topography because the upwelling hot material underneath them pushes them up above the surrounding seafloor. This provides an important driving force in
plate tectonics Plate tectonics (from the la, label=Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large ...
called
ridge push Ridge push (also known as gravitational sliding) or sliding plate force is a proposed driving force for plate motion in plate tectonics that occurs at mid-ocean ridges as the result of the rigid lithosphere sliding down the hot, raised asthenosph ...
: the increased
gravitational potential energy Gravitational energy or gravitational potential energy is the potential energy a massive object has in relation to another massive object due to gravity. It is the potential energy associated with the gravitational field, which is released (conver ...
of the mid-ocean ridge due to its dynamic uplift causes it to extend and push the surrounding lithosphere away from the ridge axis. Dynamic topography and mantle density variations can explain 90% of the long-wavelength
geoid The geoid () is the shape that the ocean surface would take under the influence of the gravity of Earth, including gravitational attraction and Earth's rotation, if other influences such as winds and tides were absent. This surface is extended ...
after the hydrostatic ellipsoid is subtracted out. Dynamic topography is the reason why the geoid is high over regions of low-density mantle. If the mantle were static, these low-density regions would be geoid lows. However, these low-density regions move upwards in a mobile, convecting mantle, elevating density interfaces such as the core-mantle boundary, 440 and 670 kilometer discontinuities, and the Earth's surface. Since both the density and the dynamic topography provide approximately the same magnitude of change in the geoid, the resultant geoid is a relatively small value (being the difference between large but similar numbers).


Examples

The geological history of the Colorado Plateau during the last 30 million years has been considerably affected by dynamic topography. At first, between 30 and 15 million years ago, the plateau was greatly uplifted. Then, in a second phase, between 15 and 5 million years ago the plateau was tilted to the east. Finally, in the last 5 million years the western part of the plateau has been tilted to the west. The plateau would have reached its high elevation of 1,400 m.a.s.l. due to dynamic topography. In
Patagonia Patagonia () refers to a geographical region that encompasses the southern end of South America, governed by Argentina and Chile. The region comprises the southern section of the Andes Mountains with lakes, fjords, temperate rainforests, and g ...
a
Miocene The Miocene ( ) is the first epoch (geology), geological epoch of the Neogene Period and extends from about (Ma). The Miocene was named by Scottish geologist Charles Lyell; the name comes from the Greek words (', "less") and (', "new") and mea ...
transgression has been attributed to a down-dragging effect of mantle convection. A subsequent regression in the Late Miocene and Pliocene and further Quaternary uplift in the eastern coast of Patagonia may in turn have been caused a decrease in this convection. The Miocene dynamic topography that developed in Patagonia advanced as a wave from south to north following the northward shift of the Chile Triple Junction and the asthenospheric window associated to it.


See also

*
Epeirogenic movement In geology, epeirogenic movement (from Greek ''epeiros'', land, and ''genesis'', birth) is upheavals or depressions of land exhibiting long wavelengths and little folding apart from broad undulations. The broad central parts of continents a ...
*
Mountain formation Mountain formation refers to the geological processes that underlie the formation of mountains. These processes are associated with large-scale movements of the Earth's crust (List of tectonic plates, tectonic plates). Fold (geology), Folding, ...
* Orogeny


References

* {{Refend


External links

* Discussion on th
definition of dynamic topography
Geodynamics Oceanography