Doppler radar
   HOME

TheInfoList



OR:

A Doppler radar is a specialized
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, Marine radar, ships, spacecraft, guided missiles, motor v ...
that uses the
Doppler effect The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who ...
to produce velocity data about objects at a distance. It does this by bouncing a
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar.


Concept


Doppler effect

The
Doppler effect The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who ...
(or Doppler shift), named after Austrian physicist Christian Doppler who proposed it in 1842, is the difference between the observed
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
and the emitted frequency of a wave for an observer moving relative to the source of the waves. It is commonly heard when a vehicle sounding a siren approaches, passes and recedes from an observer. The received frequency is higher (compared to the emitted frequency) during the approach, it is identical at the instant of passing by, and it is lower during the recession. This variation of frequency also depends on the direction the wave source is moving with respect to the observer; it is maximum when the source is moving directly toward or away from the observer and diminishes with increasing angle between the direction of motion and the direction of the waves, until when the source is moving at right angles to the observer, there is no shift. Imagine a baseball pitcher throwing one ball every second to a catcher (a frequency of 1 ball per second). Assuming the balls travel at a constant velocity and the pitcher is stationary, the catcher catches one ball every second. However, if the pitcher is jogging towards the catcher, the catcher catches balls more frequently because the balls are less spaced out (the frequency increases). The inverse is true if the pitcher is moving away from the catcher. The catcher catches balls less frequently because of the pitcher's backward motion (the frequency decreases). If the pitcher moves at an angle, but at the same speed, the frequency variation at which the receiver catches balls is less, as the distance between the two changes more slowly. From the point of view of the pitcher, the frequency remains constant (whether he's throwing balls or transmitting microwaves). Since with
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
like microwaves or with sound, frequency is inversely proportional to wavelength, the wavelength of the waves is also affected. Thus, the relative difference in velocity between a source and an observer is what gives rise to the Doppler effect.


Frequency variation

The formula for radar Doppler shift is the same as that for reflection of light by a moving mirror. There is no need to invoke
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
's theory of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The law ...
, because all observations are made in the same frame of reference. The result derived with ''c'' as the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
and ''v'' as the target velocity gives the shifted frequency (f_r) as a function of the original frequency (f_t) : ::f_r = f_t \left( \frac \right) which simplifies to ::f_r = f_t \left( \frac \right) The "beat frequency", (Doppler frequency) (f_d), is thus: ::f_d = f_r-f_t = 2v \frac Since for most practical applications of radar, v \ll c , so \left(c-v\right) \rightarrow c . We can then write: ::f_d \approx 2v \frac


Technology

There are four ways of producing the Doppler effect. Radars may be: * Coherent pulsed (CP), *
Pulse-Doppler radar A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and ...
, *
Continuous wave A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. It may refer to e.g. a laser or partic ...
(CW), or *
Frequency modulation Frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. The technology is used in telecommunications, radio broadcasting, signal processing, and computing. In analog ...
(FM). Doppler allows the use of narrow band receiver filters that reduce or eliminate signals from slow moving and stationary objects. This effectively eliminates false signals produced by trees, clouds, insects, birds, wind, and other environmental influences but various inexpensive hand held Doppler radar devices not using this may produce erroneous measurements. CW Doppler radar only provides a velocity output as the received signal from the target is compared in frequency with the original signal. Early Doppler radars included CW, but these quickly led to the development of frequency modulated continuous wave ( FMCW) radar, which sweeps the transmitter frequency to encode and determine range. With the advent of digital techniques,
Pulse-Doppler radar A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and ...
s (PD) became light enough for aircraft use, and Doppler processors for coherent pulse radars became more common. That provides Look-down/shoot-down capability. The advantage of combining Doppler processing with pulse radars is to provide accurate velocity information. This velocity is called range-rate. It describes the rate that a target moves toward or away from the radar. A target with no range-rate reflects a frequency near the transmitter frequency and cannot be detected. The classic zero doppler target is one which is on a heading that is tangential to the radar antenna beam. Basically, any target that is heading 90 degrees in relation to the antenna beam cannot be detected by its velocity (only by its conventional
reflectivity The reflectance of the surface of a material is its effectiveness in reflecting radiant energy. It is the fraction of incident electromagnetic power that is reflected at the boundary. Reflectance is a component of the response of the electronic ...
). Ultra-wideband waveforms have been investigated by the U.S. Army Research Laboratory (ARL) as a potential approach to Doppler processing due to its low average power, high resolution, and object-penetrating ability. While investigating the feasibility of whether UWB radar technology can incorporate Doppler processing to estimate the velocity of a moving target when the platform is stationary, a 2013 ARL report highlighted issues related to target range migration. However, researchers have suggested that these issues can be alleviated if the correct
matched filter In signal processing, a matched filter is obtained by correlating a known delayed signal, or ''template'', with an unknown signal to detect the presence of the template in the unknown signal. This is equivalent to convolving the unknown signal w ...
is used. In military airborne applications, the Doppler effect has 2 main advantages. Firstly, the radar is more robust against counter-measure. Return signals from weather, terrain, and countermeasures like chaff are filtered out before detection, which reduces computer and operator loading in hostile environments. Secondly, against a low altitude target, filtering on the radial speed is a very effective way to eliminate the ground clutter that always has a null speed. Low-flying military plane with countermeasure alert for hostile radar track acquisition can turn perpendicular to the hostile radar to nullify its Doppler frequency, which usually breaks the lock and drives the radar off by hiding against the ground return which is much larger.


History

Doppler radar tends to be lightweight because it eliminates heavy pulse hardware. The associated filtering removes stationary reflections while integrating signals over a longer time span, which improves range performance while reducing power. The military applied these advantages during the 1940s. Continuous-broadcast, or FM, radar was developed during
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
for
United States Navy The United States Navy (USN) is the maritime service branch of the United States Armed Forces and one of the eight uniformed services of the United States. It is the largest and most powerful navy in the world, with the estimated tonnage ...
aircraft, to support night combat operation. Most used the
UHF Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter (on ...
spectrum and had a transmit
Yagi antenna Yagi may refer to: Places * Yagi, Kyoto, in Japan * Yagi (Kashihara), in Nara Prefecture, Japan * Yagi-nishiguchi Station, in Kashihara, Nara, Japan * Kami-Yagi Station, a JR-West Kabe Line station located in 3-chōme, Yagi, Asaminami-ku, Hiroshima ...
on the
port A port is a maritime facility comprising one or more wharves or loading areas, where ships load and discharge cargo and passengers. Although usually situated on a sea coast or estuary, ports can also be found far inland, such as H ...
wing and a receiver Yagi antenna on the
starboard Port and starboard are nautical terms for watercraft and aircraft, referring respectively to the left and right sides of the vessel, when aboard and facing the bow (front). Vessels with bilateral symmetry have left and right halves which ar ...
wing. This enabled
bomber A bomber is a military combat aircraft designed to attack ground and naval targets by dropping air-to-ground weaponry (such as bombs), launching torpedoes, or deploying air-launched cruise missiles. The first use of bombs dropped from an air ...
s to fly an optimum speed when approaching ship targets, and let escort fighter aircraft train guns on enemy aircraft during night operation. These strategies were adapted to
semi-active radar homing Semi-active radar homing (SARH) is a common type of missile guidance system, perhaps the most common type for longer-range air-to-air and surface-to-air missile systems. The name refers to the fact that the missile itself is only a passive de ...
. In 1951, Carl A. Wiley invented synthetic-aperture radar, which, though distinct from mainstream Doppler radar, was based on Doppler principles, and originally patented as "Pulsed Doppler Radar Methods and Means," #3,196,436. Modern Doppler systems are light enough for mobile ground surveillance associated with infantry and surface ships. These detect motion from vehicles and personnel for night and all weather combat operation. Modern police radar are a smaller, more portable version of these systems. Early Doppler radar sets relied on large analog filters to achieve acceptable performance. Analog filters, waveguide, and amplifiers pick up vibration like microphones, so bulky vibration damping is required. That extra weight imposed unacceptable kinematic performance limitations that restricted aircraft use to night operation, heavy weather, and heavy jamming environments until the 1970s. Digital
fast Fourier transform A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). Fourier analysis converts a signal from its original domain (often time or space) to a representation in ...
(FFT) filtering became practical when modern
microprocessor A microprocessor is a computer processor where the data processing logic and control is included on a single integrated circuit, or a small number of integrated circuits. The microprocessor contains the arithmetic, logic, and control circ ...
s became available during the 1970s. This was immediately connected to coherent pulsed radars, where velocity information was extracted. This proved useful in both weather and
air traffic control Air traffic control (ATC) is a service provided by ground-based air traffic controllers who direct aircraft on the ground and through a given section of controlled airspace, and can provide advisory services to aircraft in non-controlled airsp ...
radars. The velocity information provided another input to the software tracker, and improved computer tracking. Because of the low pulse repetition frequency (PRF) of most coherent pulsed radars, which maximizes the coverage in range, the amount of Doppler processing is limited. The Doppler processor can only process velocities up to ±1/2 the PRF of the radar. This is not a problem for weather radars. Velocity information for aircraft cannot be extracted directly from low-PRF radar because sampling restricts measurements to about 75 miles per hour. Specialized radars quickly were developed when digital techniques became lightweight and more affordable.
Pulse-Doppler radar A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and ...
s combine all the benefits of long range and high velocity capability. Pulse-Doppler radars use a medium to high PRF (on the order of 3 to 30 kHz), which allows for the detection of either high-speed targets or high-resolution velocity measurements. Normally it is one or the other; a radar designed for detecting targets from zero to Mach 2 does not have a high resolution in speed, while a radar designed for high-resolution velocity measurements does not have a wide range of speeds. Weather radars are high-resolution velocity radars, while
air defense Anti-aircraft warfare, counter-air or air defence forces is the battlespace response to aerial warfare, defined by NATO as "all measures designed to nullify or reduce the effectiveness of hostile air action".AAP-6 It includes surface based ...
radars have a large range of velocity detection, but the accuracy in velocity is in the tens of
knots A knot is a fastening in rope or interwoven lines. Knot may also refer to: Places * Knot, Nancowry, a village in India Archaeology * Knot of Isis (tyet), symbol of welfare/life. * Minoan snake goddess figurines#Sacral knot Arts, entertainme ...
. Antenna designs for the CW and FM-CW started out as separate transmit and receive antennas before the advent of affordable microwave designs. In the late 1960s, traffic radars began being produced which used a single antenna. This was made possible by the use of circular polarization and a multi-port waveguide section operating at X band. By the late 1970s this changed to linear polarization and the use of ferrite
circulator A circulator is a passive, non-reciprocal three- or four- port device that only allows a microwave or radio-frequency signal to exit through the port directly after the one it entered. Optical circulators have similar behavior. Ports are where ...
s at both X and K bands. PD radars operate at too high a PRF to use a transmit-receive gas filled switch, and most use
solid-state Solid state, or solid matter, is one of the four fundamental states of matter. Solid state may also refer to: Electronics * Solid-state electronics, circuits built of solid materials * Solid state ionics, study of ionic conductors and their ...
devices to protect the receiver low-noise amplifier when the transmitter is fired.


Applications

Doppler radars are used in
aviation Aviation includes the activities surrounding mechanical flight and the aircraft industry. ''Aircraft'' includes airplane, fixed-wing and helicopter, rotary-wing types, morphable wings, wing-less lifting bodies, as well as aerostat, lighter- ...
, sounding satellites,
Major League Baseball Major League Baseball (MLB) is a professional baseball organization and the oldest major professional sports league in the world. MLB is composed of 30 total teams, divided equally between the National League (NL) and the American League (A ...
's StatCast system,
meteorology Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did no ...
,
radar gun A radar speed gun (also radar gun and speed trap gun) is a device used to measure the speed of moving objects. It is used in law-enforcement to measure the speed of moving vehicles and is often used in professional spectator sport, for things su ...
s,
radiology Radiology ( ) is the medical discipline that uses medical imaging to diagnose diseases and guide their treatment, within the bodies of humans and other animals. It began with radiography (which is why its name has a root referring to radiat ...
and
healthcare Health care or healthcare is the improvement of health via the prevention, diagnosis, treatment, amelioration or cure of disease, illness, injury, and other physical and mental impairments in people. Health care is delivered by health pro ...
(fall detection and risk assessment, nursing or clinic purpose), and bistatic radar (
surface-to-air missile A surface-to-air missile (SAM), also known as a ground-to-air missile (GTAM) or surface-to-air guided weapon (SAGW), is a missile designed to be launched from the ground to destroy aircraft or other missiles. It is one type of anti-aircraft syst ...
s). A
termite Termites are small insects that live in colonies and have distinct castes ( eusocial) and feed on wood or other dead plant matter. Termites comprise the infraorder Isoptera, or alternatively the epifamily Termitoidae, within the order Blat ...
detection system was also proposed.


Weather

Partly because of its common use by television meteorologists in on-air weather reporting, the specific term "''Doppler Radar''" has erroneously become popularly synonymous with the type of radar used in meteorology. Most modern
weather radar Weather radar, also called weather surveillance radar (WSR) and Doppler weather radar, is a type of radar used to locate precipitation, calculate its motion, and estimate its type (rain, snow, hail etc.). Modern weather radars are mostly pulse- ...
s use the pulse-Doppler technique to examine the motion of
precipitation In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravitational pull from clouds. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. ...
, but it is only a part of the processing of their data. So, while these radars use a highly specialized form of ''Doppler radar'', this type of radar is much broader in its meaning and its applications. The work on the Doppler function for weather radar has a long history in many countries. In June 1958, American researchers David Holmes and Robert Smith were able to detect the rotation of a tornado using the mobile continuous-wave radar (photo to the right). Norman's laboratory, which later became the National Severe Storms Laboratory (NSSL), modified this radar to make it a pulsed Doppler radar allowing more easily to know the position of the echoes and having a greater power The work was accelerated after such event in the United States as the 1974 Super Outbreak when 148 tornadoes roared through thirteen states. The reflectivity only radar of the time could only locate the precipitation structure of the thunderclouds but not the mesocyclonic rotation and divergence of winds leading to the development of
tornado A tornado is a violently rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud or, in rare cases, the base of a cumulus cloud. It is often referred to as a twister, whirlwind or cyclone, alt ...
es or downbursts. The NSSL Doppler became operational in 1971 and led to the NEXRAD network being deployed at the end of the 1980s.


Navigation

Doppler radars were used as a navigation aid for aircraft and spacecraft. By directly measuring the movement of the ground with the radar, and then comparing this to the airspeed returned from the aircraft instruments, the wind speed could be accurately determined for the first time. This value was then used for highly accurate dead reckoning. One early example of such a system was the
Green Satin radar Green Satin, also known as ARI 5851, was a Doppler radar system developed by the Royal Air Force as an air navigation aid. The system provided direct measures of the drift speed and direction, and thereby allowed accurate calculation of the winds a ...
used in the
English Electric Canberra The English Electric Canberra is a British first-generation, jet-powered medium bomber. It was developed by English Electric during the mid- to late 1940s in response to a 1944 Air Ministry requirement for a successor to the wartime de Havil ...
. This system sent a pulsed signal at a very low repetition rate so it could use a single antenna to transmit and receive. An
oscillator Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
held the reference frequency for comparison to the received signal. In practice, the initial "fix" was taken using a radio navigation system, normally Gee, and the Green Satin then provided accurate long-distance navigation beyond Gee's 350-mile range. Similar systems were used in a number of aircraft of the era,John Barry
"Doppler Navigator Development"
Friends of the CRC, 17 September 1973
and were combined with the main search radars of fighter designs by the 1960s. Doppler navigation was in common commercial aviation use in the 1960s until it was largely superseded by
inertial navigation system An inertial navigation system (INS) is a navigation device that uses motion sensors ( accelerometers), rotation sensors ( gyroscopes) and a computer to continuously calculate by dead reckoning the position, the orientation, and the velocity ...
s. The equipment consisted of a transmitter/receiver unit, a processing unit and a gyro stabilised antenna platform. The antenna generated four beams and was rotated by a servo mechanism to align with the aircraft's track by equalising the Doppler shift from the left and right hand antennas. A synchro transmitted the platform angle to the flight deck, thus providing a measure of 'drift angle'. The ground speed was determined from the Doppler shift between the forward and aft facing beams. These were displayed on the flight deck on single instrument. Some aircraft had an additional 'Doppler Computer'. This was a mechanical device containing a steel ball rotated by a motor whose speed was controlled by the Doppler determined ground speed. The angle of this motor was controlled by the 'drift angle'. Two fixed wheels, one 'fore and aft' the other 'left to right' drove counters to output distance along track and across track difference. The aircraft's compass was integrated into the computer so that a desired track could be set between two waypoints on an over water great circle route. It may seem surprising to 21st. century readers, but it actually worked rather well and was great improvement over other 'dead reckoning' methods available at the time. It was generally backed up with position fixes from Loran, or as a last resort sextant and chronometer. It was possible to cross the Atlantic with an error of a couple of miles when in range of a couple of VORs or NDBs. Its major shortcoming in practice was the sea state, as a calm sea gave poor radar returns and hence unreliable Doppler measurements. But this was infrequent on the North Atlantic


Locus-based navigation

Location-based Doppler techniques were also used in the U.S. Navy's historical Transit satellite navigation system, with satellite transmitters and ground-based receivers, and are currently used in the civilian Argos system, which uses satellite receivers and ground-based transmitters. In these cases, the ground stations are either stationary or slow-moving, and the Doppler offset being measured is caused by the relative motion between the ground station and the fast-moving satellite. The combination of Doppler offset and reception time can be used to generate a locus of locations that would have the measured offset at that intersects the Earth's surface at that moment: by combining this with other loci from measurements at other times, the true location of the ground station can be determined accurately.


See also

* Continuous-wave radar *
Semi-active radar homing Semi-active radar homing (SARH) is a common type of missile guidance system, perhaps the most common type for longer-range air-to-air and surface-to-air missile systems. The name refers to the fact that the missile itself is only a passive de ...


References


Further reading

* *


External links


Description of Doppler shift used in Continuous wave Doppler radar
{{DEFAULTSORT:Doppler Radar Radar