Disinfection by-products
   HOME

TheInfoList



OR:

Disinfection by-products (DBPs) result from
chemical reaction A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
s between organic and inorganic matter in water with chemical treatment agents during the
water disinfection Water purification is the process of removing undesirable chemicals, biological contaminants, suspended solids, and gases from water. The goal is to produce water that is fit for specific purposes. Most water is purified and disinfected for hu ...
process.


Chlorination disinfection byproducts

Chlorinated disinfection agents such as
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine i ...
and
monochloramine Monochloramine, often called chloramine, is the chemical compound with the formula NH2Cl. Together with dichloramine (NHCl2) and nitrogen trichloride (NCl3), it is one of the three chloramines of ammonia. It is a colorless liquid at its melting p ...
are strong
oxidizing agent An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ). In other words, an oxi ...
s introduced into water in order to destroy pathogenic microbes, to oxidize taste/odor-forming compounds, and to form a disinfectant residual so water can reach the consumer tap safe from microbial contamination. These disinfectants may react with naturally present fulvic and
humic Humic substances (HS) are organic compounds that are important components of humus, the major organic fraction of soil, peat, and coal (and also a constituent of many upland streams, dystrophic lakes, and ocean water). For a long era in the 19th an ...
acids, amino acids, and other natural organic matter, as well as iodide and bromide ions, to produce a range of DBPs such as the
trihalomethanes In chemistry, trihalomethanes (THMs) are chemical compounds in which three of the four hydrogen atoms of methane () are replaced by halogen atoms. Many trihalomethanes find uses in industry as solvents or refrigerants. THMs are also environ ...
(THMs),
haloacetic acids Haloacetic acids are carboxylic acids in which a halogen atom takes the place of a hydrogen atom in acetic acid. Thus, in a monohaloacetic acid, a single halogen would replace a hydrogen atom. For example, chloroacetic acid would have the structur ...
(HAAs),
bromate The bromate anion, BrO, is a bromine-based oxoanion. A bromate is a chemical compound that contains this ion. Examples of bromates include sodium bromate, (), and potassium bromate, (). Bromates are formed many different ways in municipal drin ...
, and chlorite (which are regulated in the US), and so-called "emerging" DBPs such as halonitromethanes, haloacetonitriles, haloamides, halofuranones, iodo-acids such as
iodoacetic acid Iodoacetic acid is a derivative of acetic acid. It is a toxic compound, because, like many alkyl halides, it is an alkylating agent. It reacts with cysteine residues in proteins. It is often used to modify SH-groups to prevent the re-formation ...
, iodo-THMs ( iodotrihalomethanes), nitrosamines, and others. Chloramine has become a popular disinfectant in the US, and it has been found to produce ''N''-nitrosodimethylamine (NDMA), which is a possible human carcinogen, as well as highly
genotoxic Genotoxicity is the property of chemical agents that damage the genetic information within a cell causing mutations, which may lead to cancer. While genotoxicity is often confused with mutagenicity, all mutagens are genotoxic, but some genotoxic s ...
iodinated DBPs, such as
iodoacetic acid Iodoacetic acid is a derivative of acetic acid. It is a toxic compound, because, like many alkyl halides, it is an alkylating agent. It reacts with cysteine residues in proteins. It is often used to modify SH-groups to prevent the re-formation ...
, when iodide is present in source waters. Residual chlorine and other disinfectants may also react further within the distribution network – both by further reactions with dissolved natural organic matter and with biofilms present in the pipes. In addition to being highly influenced by the types of organic and inorganic matter in the source water, the different species and concentrations of DBPs vary according to the type of disinfectant used, the dose of disinfectant, the concentration of natural organic matter and bromide/iodide, the time since dosing (i.e. water age), temperature, and pH of the water. Swimming pools using chlorine have been found to contain trihalomethanes, although generally they are below current EU standard for drinking water (100 micrograms per litre). Concentrations of trihalomethanes (mainly chloroform) of up to 0.43 ppm have been measured. In addition, trichloramine has been detected in the air above swimming pools, and it is suspected in the increased asthma observed in elite swimmers. Trichloramine is formed by the reaction of urea (from urine and sweat) with chlorine and gives the indoor swimming pool its distinctive odor.


Byproducts from non-chlorinated disinfectants

Several powerful oxidizing agents are used in disinfecting and treating drinking water, and many of these also cause the formation of DBPs.
Ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the lo ...
, for example, produces ketones, carboxylic acids, and aldehydes, including formaldehyde. Bromide in source waters can be converted by ozone into
bromate The bromate anion, BrO, is a bromine-based oxoanion. A bromate is a chemical compound that contains this ion. Examples of bromates include sodium bromate, (), and potassium bromate, (). Bromates are formed many different ways in municipal drin ...
, a potent carcinogen that is regulated in the United States, as well as other brominated DBPs. As regulations are tightened on established DBPs such as THMs and HAAs, drinking water treatment plants may switch to alternative disinfection methods. This change will alter the distribution of classes of DBP's.


Occurrence

DBPs are present in most drinking water supplies that have been subject to
chlorination Chlorination may refer to: * Chlorination reaction In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transform ...
, chloramination, ozonation, or treatment with
chlorine dioxide Chlorine dioxide is a chemical compound with the formula ClO2 that exists as yellowish-green gas above 11 °C, a reddish-brown liquid between 11 °C and −59 °C, and as bright orange crystals below −59 °C. It is usually ...
. Many hundreds of DBPs exist in treated drinking water and at least 600 have been identified. The low levels of many of these DBPs, coupled with the analytical costs in testing water samples for them, means that in practice only a handful of DBPs are actually monitored. Increasingly it is recognized that the genotoxicities and cytotoxicities of many of the DBPs not subject to regulatory monitoring, (particularly iodinated, nitrogenous DBPs) are comparatively much higher than those DBPs commonly monitored in the developed world (THMs and HAAs). In 2021, a new group of DBPs known as halogenated pyridinols was discovered, containing at least 8 previously unknown heterocyclic nitrogenous DBPs. They were found to require low pH treatments of 3.0 to be removed effectively. When their
developmental Development of the human body is the process of growth to maturity. The process begins with fertilization, where an egg released from the ovary of a female is penetrated by a sperm cell from a male. The resulting zygote develops through mitosi ...
and
acute toxicity Acute toxicity describes the adverse effects of a substance that result either from a single exposure or from multiple exposures in a short period of time (usually less than 24 hours). To be described as ''acute'' toxicity, the adverse effect ...
was tested on
zebrafish The zebrafish (''Danio rerio'') is a freshwater fish belonging to the minnow family (Cyprinidae) of the order Cypriniformes. Native to South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio (and thus often ca ...
embryos, it found to be slightly lower than those of halogenated
benzoquinones Benzoquinone (C6H4O2) is a quinone with a single benzene ring. There are 2 (out of 3 hypothetical) benzoquinones: * 1,4-Benzoquinone, most commonly, right image (also ''para''-benzoquinone, ''p''-benzoquinone, ''para''-quinone, or just quinone) * ...
, but dozens of times higher than of commonly known DBPs such as tribromomethane and
iodoacetic acid Iodoacetic acid is a derivative of acetic acid. It is a toxic compound, because, like many alkyl halides, it is an alkylating agent. It reacts with cysteine residues in proteins. It is often used to modify SH-groups to prevent the re-formation ...
.


Health effects

Epidemiological studies have looked at the associations between exposure to DBPs in drinking water with cancers, adverse birth outcomes and birth defects. Meta-analyses and pooled analyses of these studies have demonstrated consistent associations for bladder cancer and for babies being born
small for gestational age Small for gestational age (SGA) newborns are those who are smaller in size than normal for the gestational age, most commonly defined as a weight below the 10th percentile for the gestational age. Causes Being small for gestational age is broadly ...
, but not for congenital anomalies (birth defects). Early-term miscarriages have also been reported in some studies. The exact putative agent remains unknown, however, in the epidemiological studies since the number of DBPs in a water sample are high and exposure surrogates such as monitoring data of a specific by-product (often total trihalomethanes) are used in lieu of more detailed exposure assessment. The
World Health Organization The World Health Organization (WHO) is a specialized agency of the United Nations responsible for international public health. The WHO Constitution states its main objective as "the attainment by all peoples of the highest possible level of ...
has stated that "the risk of death from pathogens is at least 100 to 1000 times greater than the risk of cancer from disinfection by-products (DBPs)" the "risk of illness from pathogens is at least 10 000 to 1 million times greater than the risk of cancer from DBPs".


Regulation and monitoring

The
United States Environmental Protection Agency The Environmental Protection Agency (EPA) is an independent executive agency of the United States federal government tasked with environmental protection matters. President Richard Nixon proposed the establishment of EPA on July 9, 1970; it ...
has set Maximum Contaminant Levels (MCLs) for
bromate The bromate anion, BrO, is a bromine-based oxoanion. A bromate is a chemical compound that contains this ion. Examples of bromates include sodium bromate, (), and potassium bromate, (). Bromates are formed many different ways in municipal drin ...
, chlorite, haloacetic acids and total
trihalomethane In chemistry, trihalomethanes (THMs) are chemical compounds in which three of the four hydrogen atoms of methane () are replaced by halogen atoms. Many trihalomethanes find uses in industry as solvents or refrigerants. THMs are also environmenta ...
s (TTHMs). In Europe, the level of TTHMs has been set at 100 micrograms per litre, and the level for bromate to 10 micrograms per litre, under the Drinking Water Directive. No guideline values have been set for HAAs in Europe. The World Health Organization has established guidelines for several DBPs, including bromate, bromodichloromethane, chlorate, chlorite, chloroacetic acid, chloroform, cyanogen chloride, dibromoacetonitrile, dibromochloromethane, dichloroacetic acid, dichloroacetonitrile, NDMA, and trichloroacetic acid.


See also

* Stuart W. Krasner


References

{{DEFAULTSORT:Disinfection By-Product Chlorine Drinking water Water pollution Water treatment