Dimension (vector space)
   HOME

TheInfoList



OR:

In mathematics, the dimension of a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
''V'' is the cardinality (i.e., the number of vectors) of a
basis Basis may refer to: Finance and accounting * Adjusted basis, the net cost of an asset after adjusting for various tax-related items *Basis point, 0.01%, often used in the context of interest rates * Basis trading, a trading strategy consisting ...
of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after
Georg Hamel Georg Karl Wilhelm Hamel (12 September 1877 – 4 October 1954) was a German mathematician with interests in mechanics, the foundations of mathematics and function theory. Biography Hamel was born in Düren, Rhenish Prussia. He studied at A ...
) or algebraic dimension to distinguish it from other types of
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
. For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say V is if the dimension of V is
finite Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marke ...
, and if its dimension is
infinite Infinite may refer to: Mathematics * Infinite set, a set that is not a finite set *Infinity, an abstract concept describing something without any limit Music *Infinite (group), a South Korean boy band *''Infinite'' (EP), debut EP of American m ...
. The dimension of the vector space V over the field F can be written as \dim_F(V) or as : F read "dimension of V over F". When F can be inferred from context, \dim(V) is typically written.


Examples

The vector space \R^3 has \left\ as a standard basis, and therefore \dim_(\R^3) = 3. More generally, \dim_(\R^n) = n, and even more generally, \dim_(F^n) = n for any field F. The
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s \Complex are both a real and complex vector space; we have \dim_(\Complex) = 2 and \dim_(\Complex) = 1. So the dimension depends on the base field. The only vector space with dimension 0 is \, the vector space consisting only of its zero element.


Properties

If W is a linear subspace of V then \dim (W) \leq \dim (V). To show that two finite-dimensional vector spaces are equal, the following criterion can be used: if V is a finite-dimensional vector space and W is a linear subspace of V with \dim (W) = \dim (V), then W = V. The space \R^n has the standard basis \left\, where e_i is the i-th column of the corresponding identity matrix. Therefore, \R^n has dimension n. Any two finite dimensional vector spaces over F with the same dimension are isomorphic. Any
bijective In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
map between their bases can be uniquely extended to a bijective linear map between the vector spaces. If B is some set, a vector space with dimension , B, over F can be constructed as follows: take the set F(B) of all functions f : B \to F such that f(b) = 0 for all but finitely many b in B. These functions can be added and multiplied with elements of F to obtain the desired F-vector space. An important result about dimensions is given by the
rank–nullity theorem The rank–nullity theorem is a theorem in linear algebra, which asserts that the dimension of the domain of a linear map is the sum of its rank (the dimension of its image) and its ''nullity'' (the dimension of its kernel). p. 70, §2.1, Theo ...
for linear maps. If F / K is a field extension, then F is in particular a vector space over K. Furthermore, every F-vector space V is also a K-vector space. The dimensions are related by the formula \dim_K(V) = \dim_K(F) \dim_F(V). In particular, every complex vector space of dimension n is a real vector space of dimension 2n. Some formulae relate the dimension of a vector space with the cardinality of the base field and the cardinality of the space itself. If V is a vector space over a field F then and if the dimension of V is denoted by \dim V, then: :If dim V is finite then , V, = , F, ^. :If dim V is infinite then , V, = \max (, F, , \dim V).


Generalizations

A vector space can be seen as a particular case of a
matroid In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being ...
, and in the latter there is a well-defined notion of dimension. The
length of a module In abstract algebra, the length of a module is a generalization of the dimension of a vector space which measures its size. page 153 In particular, as in the case of vector spaces, the only modules of finite length are finitely generated modules. It ...
and the rank of an abelian group both have several properties similar to the dimension of vector spaces. The
Krull dimension In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally th ...
of a commutative ring, named after
Wolfgang Krull Wolfgang Krull (26 August 1899 – 12 April 1971) was a German mathematician who made fundamental contributions to commutative algebra, introducing concepts that are now central to the subject. Krull was born and went to school in Baden-Baden. H ...
(1899–1971), is defined to be the maximal number of strict inclusions in an increasing chain of prime ideals in the ring.


Trace

The dimension of a vector space may alternatively be characterized as the trace of the
identity operator Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film) ...
. For instance, \operatorname\ \operatorname_ = \operatorname \left(\begin 1 & 0 \\ 0 & 1 \end\right) = 1 + 1 = 2. This appears to be a circular definition, but it allows useful generalizations. Firstly, it allows for a definition of a notion of dimension when one has a trace but no natural sense of basis. For example, one may have an
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
A with maps \eta : K \to A (the inclusion of scalars, called the ''unit'') and a map \epsilon : A \to K (corresponding to trace, called the '' counit''). The composition \epsilon \circ \eta : K \to K is a scalar (being a linear operator on a 1-dimensional space) corresponds to "trace of identity", and gives a notion of dimension for an abstract algebra. In practice, in bialgebras, this map is required to be the identity, which can be obtained by normalizing the counit by dividing by dimension (\epsilon := \textstyle \operatorname), so in these cases the normalizing constant corresponds to dimension. Alternatively, it may be possible to take the trace of operators on an infinite-dimensional space; in this case a (finite) trace is defined, even though no (finite) dimension exists, and gives a notion of "dimension of the operator". These fall under the rubric of "
trace class In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace ...
operators" on a Hilbert space, or more generally
nuclear operator In mathematics, nuclear operators are an important class of linear operators introduced by Alexander Grothendieck in his doctoral dissertation. Nuclear operators are intimately tied to the projective tensor product of two topological vector spac ...
s on a Banach space. A subtler generalization is to consider the trace of a ''family'' of operators as a kind of "twisted" dimension. This occurs significantly in
representation theory Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
, where the character of a representation is the trace of the representation, hence a scalar-valued function on a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
\chi : G \to K, whose value on the identity 1 \in G is the dimension of the representation, as a representation sends the identity in the group to the identity matrix: \chi(1_G) = \operatorname\ I_V = \dim V. The other values \chi(g) of the character can be viewed as "twisted" dimensions, and find analogs or generalizations of statements about dimensions to statements about characters or representations. A sophisticated example of this occurs in the theory of
monstrous moonshine In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group ''M'' and modular functions, in particular, the ''j'' function. The term was coined by John Conway and Simon P. Norton in 1979. ...
: the j-invariant is the graded dimension of an infinite-dimensional graded representation of the
monster group In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order    24632059761121331719232931414759 ...
, and replacing the dimension with the character gives the McKay–Thompson series for each element of the Monster group.


See also

* * * * * , also called Lebesgue covering dimension


Notes


References


Sources

*


External links


MIT Linear Algebra Lecture on Independence, Basis, and Dimension by Gilbert Strang
at MIT OpenCourseWare {{DEFAULTSORT:Dimension (Vector Space) Dimension Linear algebra Vectors (mathematics and physics)