Del in cylindrical and spherical coordinates
   HOME

TheInfoList



OR:

This is a list of some
vector calculus Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space \mathbb^3. The term "vector calculus" is sometimes used as a synonym for the broader subjec ...
formulae for working with common
curvilinear In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally inv ...
coordinate system In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sig ...
s.


Notes

* This article uses the standard notation ISO 80000-2, which supersedes
ISO 31-11 ISO 31-11:1992 was the part of international standard ISO 31 that defines ''mathematical signs and symbols for use in physical sciences and technology''. It was superseded in 2009 by ISO 80000-2:2009 and subsequently revised in 2019 as ISO-800 ...
, for spherical coordinates (other sources may reverse the definitions of ''θ'' and ''φ''): ** The polar angle is denoted by \theta \in , \pi/math>: it is the angle between the ''z''-axis and the radial vector connecting the origin to the point in question. ** The azimuthal angle is denoted by \varphi \in , 2\pi/math>: it is the angle between the ''x''-axis and the projection of the radial vector onto the ''xy''-plane. * The function can be used instead of the mathematical function owing to its
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined ** Domain of definition of a partial function ** Natural domain of a partial function **Domain of holomorphy of a function * ...
and
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensio ...
. The classical arctan function has an image of , whereas atan2 is defined to have an image of .


Coordinate conversions

CAUTION: the operation \arctan\left(\frac\right) must be interpreted as the two-argument inverse tangent,
atan2 In computing and mathematics, the function atan2 is the 2-argument arctangent. By definition, \theta = \operatorname(y, x) is the angle measure (in radians, with -\pi < \theta \leq \pi) between the positive
.


Unit vector conversions


Del formula

{, class="wikitable" style="text-align: center;" , + Table with the
del operator in cartesian, cylindrical and spherical coordinates , - ! Operation !
Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
! Cylindrical coordinates ! Spherical coordinates ,
where is the polar angle and is the azimuthal angle , - ! Vector field , A_x \hat{\mathbf x} + A_y \hat{\mathbf y} + A_z \hat{\mathbf z} , A_\rho \hat{\boldsymbol \rho} + A_\varphi \hat{\boldsymbol \varphi} + A_z \hat{\mathbf z} , A_r \hat{\mathbf r} + A_\theta \hat{\boldsymbol \theta} + A_\varphi \hat{\boldsymbol \varphi} , - !
Gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
, {\partial f \over \partial x}\hat{\mathbf x} + {\partial f \over \partial y}\hat{\mathbf y} + {\partial f \over \partial z}\hat{\mathbf z} , {\partial f \over \partial \rho}\hat{\boldsymbol \rho} + {1 \over \rho}{\partial f \over \partial \varphi}\hat{\boldsymbol \varphi} + {\partial f \over \partial z}\hat{\mathbf z} , {\partial f \over \partial r}\hat{\mathbf r} + {1 \over r}{\partial f \over \partial \theta}\hat{\boldsymbol \theta} + {1 \over r\sin\theta}{\partial f \over \partial \varphi}\hat{\boldsymbol \varphi} , - !
Divergence In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of ...
, {\partial A_x \over \partial x} + {\partial A_y \over \partial y} + {\partial A_z \over \partial z} , {1 \over \rho}{\partial \left( \rho A_\rho \right) \over \partial \rho} + {1 \over \rho}{\partial A_\varphi \over \partial \varphi} + {\partial A_z \over \partial z} , {1 \over r^2}{\partial \left( r^2 A_r \right) \over \partial r} + {1 \over r\sin\theta}{\partial \over \partial \theta} \left( A_\theta\sin\theta \right) + {1 \over r\sin\theta}{\partial A_\varphi \over \partial \varphi} , - !
Curl cURL (pronounced like "curl", UK: , US: ) is a computer software project providing a library (libcurl) and command-line tool (curl) for transferring data using various network protocols. The name stands for "Client URL". History cURL was ...
, \begin{align} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) &\hat{\mathbf x} \\ + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) &\hat{\mathbf y} \\ + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) &\hat{\mathbf z} \end{align} , \begin{align} \left( \frac{1}{\rho}\frac{\partial A_z}{\partial \varphi} - \frac{\partial A_\varphi}{\partial z} \right) &\hat{\boldsymbol \rho} \\ + \left( \frac{\partial A_\rho}{\partial z} - \frac{\partial A_z}{\partial \rho} \right) &\hat{\boldsymbol \varphi} \\ + \frac{1}{\rho} \left( \frac{\partial \left(\rho A_\varphi\right)}{\partial \rho} - \frac{\partial A_\rho}{\partial \varphi} \right) &\hat{\mathbf z} \end{align} , \begin{align} \frac{1}{r\sin\theta} \left( \frac{\partial}{\partial \theta} \left(A_\varphi\sin\theta \right) - \frac{\partial A_\theta}{\partial \varphi} \right) &\hat{\mathbf r} \\ {}+ \frac{1}{r} \left( \frac{1}{\sin\theta} \frac{\partial A_r}{\partial \varphi} - \frac{\partial}{\partial r} \left( r A_\varphi \right) \right) &\hat{\boldsymbol \theta} \\ {}+ \frac{1}{r} \left( \frac{\partial}{\partial r} \left( r A_{\theta} \right) - \frac{\partial A_r}{\partial \theta} \right) &\hat{\boldsymbol \varphi} \end{align} , - !
Laplace operator In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is th ...
, {\partial^2 f \over \partial x^2} + {\partial^2 f \over \partial y^2} + {\partial^2 f \over \partial z^2} , {1 \over \rho}{\partial \over \partial \rho}\left(\rho {\partial f \over \partial \rho}\right) + {1 \over \rho^2}{\partial^2 f \over \partial \varphi^2} + {\partial^2 f \over \partial z^2} , {1 \over r^2}{\partial \over \partial r}\!\left(r^2 {\partial f \over \partial r}\right) \!+\!{1 \over r^2\!\sin\theta}{\partial \over \partial \theta}\!\left(\sin\theta {\partial f \over \partial \theta}\right) \!+\!{1 \over r^2\!\sin^2\theta}{\partial^2 f \over \partial \varphi^2} , - ! Vector Gradient , \begin{align}{}&\frac{\partial A_x}{\partial x} \hat{\mathbf x} \otimes \hat{\mathbf x} + \frac{\partial A_x}{\partial y} \hat{\mathbf x} \otimes \hat{\mathbf y} + \frac{\partial A_x}{\partial z} \hat{\mathbf x} \otimes \hat{\mathbf z} \\ {}+ &\frac{\partial A_y}{\partial x} \hat{\mathbf y} \otimes \hat{\mathbf x} + \frac{\partial A_y}{\partial y} \hat{\mathbf y} \otimes \hat{\mathbf y} + \frac{\partial A_y}{\partial z} \hat{\mathbf y} \otimes \hat{\mathbf z} \\ {}+ &\frac{\partial A_z}{\partial x} \hat{\mathbf z} \otimes \hat{\mathbf x} + \frac{\partial A_z}{\partial y} \hat{\mathbf z} \otimes \hat{\mathbf y} + \frac{\partial A_z}{\partial z} \hat{\mathbf z} \otimes \hat{\mathbf z}\end{align} , \begin{align}{}&\frac{\partial A_\rho}{\partial \rho} \hat{\boldsymbol \rho} \otimes \hat{\boldsymbol \rho} + \left(\frac{1}{\rho}\frac{\partial A_\rho}{\partial \varphi}-\frac{A_\varphi}{\rho}\right) \hat{\boldsymbol \rho} \otimes \hat{\boldsymbol \varphi} + \frac{\partial A_\rho}{\partial z} \hat{\boldsymbol \rho} \otimes \hat{\mathbf z} \\ {}+ &\frac{\partial A_\varphi}{\partial \rho} \hat{\boldsymbol \varphi} \otimes \hat{\boldsymbol \rho} + \left(\frac{1}{\rho}\frac{\partial A_\varphi}{\partial \varphi}+\frac{A_\rho}{\rho}\right) \hat{\boldsymbol \varphi} \otimes \hat{\boldsymbol \varphi} + \frac{\partial A_\varphi}{\partial z} \hat{\boldsymbol \varphi} \otimes \hat{\mathbf z} \\ {}+ &\frac{\partial A_z}{\partial \rho} \hat{\mathbf z} \otimes \hat{\boldsymbol \rho} + \frac{1}{\rho}\frac{\partial A_z}{\partial \varphi} \hat{\mathbf z} \otimes \hat{\boldsymbol \varphi} + \frac{\partial A_z}{\partial z} \hat{\mathbf z} \otimes \hat{\mathbf z}\end{align} , \begin{align}{}&\frac{\partial A_r}{\partial r} \hat{\mathbf r} \otimes \hat{\mathbf r} + \left(\frac{1}{r}\frac{\partial A_r}{\partial \theta}-\frac{A_\theta}{r}\right) \hat{\mathbf r} \otimes \hat{\boldsymbol \theta} + \left(\frac{1}{r \sin\theta}\frac{\partial A_r}{\partial \varphi} - \frac{A_\varphi}{r}\right) \hat{\mathbf r} \otimes \hat{\boldsymbol \varphi} \\ {}+ &\frac{\partial A_\theta}{\partial r} \hat{\boldsymbol \theta} \otimes \hat{\mathbf r} + \left(\frac{1}{r}\frac{\partial A_\theta}{\partial \theta}+\frac{A_r}{r}\right) \hat{\boldsymbol \theta} \otimes \hat{\boldsymbol \theta} + \left(\frac{1}{r \sin\theta}\frac{\partial A_\theta}{\partial \varphi} - \cot\theta \frac{A_\varphi}{r}\right) \hat{\boldsymbol \theta} \otimes \hat{\boldsymbol \varphi} \\ {}+ &\frac{\partial A_\varphi}{\partial r} \hat{\boldsymbol \varphi} \otimes \hat{\mathbf r} + \frac{1}{r}\frac{\partial A_\varphi}{\partial \theta} \hat{\boldsymbol \varphi} \otimes \hat{\boldsymbol \theta} + \left(\frac{1}{r \sin\theta}\frac{\partial A_\varphi}{\partial \varphi} + \cot\theta \frac{A_\theta}{r} + \frac{A_r}{r}\right) \hat{\boldsymbol \varphi} \otimes \hat{\boldsymbol \varphi}\end{align} , - ! Vector Laplacian , \nabla^2 A_x \hat{\mathbf x} + \nabla^2 A_y \hat{\mathbf y} + \nabla^2 A_z \hat{\mathbf z} , \begin{align} \mathopen{}\left(\nabla^2 A_\rho - \frac{A_\rho}{\rho^2} - \frac{2}{\rho^2} \frac{\partial A_\varphi}{\partial \varphi}\right)\mathclose{} &\hat{\boldsymbol \rho} \\ + \mathopen{}\left(\nabla^2 A_\varphi - \frac{A_\varphi}{\rho^2} + \frac{2}{\rho^2} \frac{\partial A_\rho}{\partial \varphi}\right)\mathclose{} &\hat{\boldsymbol \varphi} \\ {}+ \nabla^2 A_z &\hat{\mathbf z} \end{align} , \begin{align} \left(\nabla^2 A_r - \frac{2 A_r}{r^2} - \frac{2}{r^2\sin\theta} \frac{\partial \left(A_\theta \sin\theta\right)}{\partial\theta} - \frac{2}{r^2\sin\theta}{\frac{\partial A_\varphi}{\partial \varphi\right) &\hat{\mathbf r} \\ + \left(\nabla^2 A_\theta - \frac{A_\theta}{r^2\sin^2\theta} + \frac{2}{r^2} \frac{\partial A_r}{\partial \theta} - \frac{2 \cos\theta}{r^2\sin^2\theta} \frac{\partial A_\varphi}{\partial \varphi}\right) &\hat{\boldsymbol \theta} \\ + \left(\nabla^2 A_\varphi - \frac{A_\varphi}{r^2\sin^2\theta} + \frac{2}{r^2\sin\theta} \frac{\partial A_r}{\partial \varphi} + \frac{2 \cos\theta}{r^2\sin^2\theta} \frac{\partial A_\theta}{\partial \varphi}\right) &\hat{\boldsymbol \varphi} \end{align} , - ! Material derivative , \mathbf{A} \cdot \nabla B_x \hat{\mathbf x} + \mathbf{A} \cdot \nabla B_y \hat{\mathbf y} + \mathbf{A} \cdot \nabla B_z \hat{\mathbf{z , \begin{align} \left(A_\rho \frac{\partial B_\rho}{\partial \rho}+\frac{A_\varphi}{\rho}\frac{\partial B_\rho}{\partial \varphi}+A_z\frac{\partial B_\rho}{\partial z}-\frac{A_\varphi B_\varphi}{\rho}\right) &\hat{\boldsymbol \rho} \\ + \left(A_\rho \frac{\partial B_\varphi}{\partial \rho} + \frac{A_\varphi}{\rho}\frac{\partial B_\varphi}{\partial \varphi} + A_z\frac{\partial B_\varphi}{\partial z} + \frac{A_\varphi B_\rho}{\rho}\right) &\hat{\boldsymbol \varphi}\\ + \left(A_\rho \frac{\partial B_z}{\partial \rho}+\frac{A_\varphi}{\rho}\frac{\partial B_z}{\partial \varphi}+A_z\frac{\partial B_z}{\partial z}\right) &\hat{\mathbf z} \end{align} , \begin{align} \left( A_r \frac{\partial B_r}{\partial r} + \frac{A_\theta}{r} \frac{\partial B_r}{\partial \theta} + \frac{A_\varphi}{r\sin\theta} \frac{\partial B_r}{\partial \varphi} - \frac{A_\theta B_\theta + A_\varphi B_\varphi}{r} \right) &\hat{\mathbf r} \\ + \left( A_r \frac{\partial B_\theta}{\partial r} + \frac{A_\theta}{r} \frac{\partial B_\theta}{\partial \theta} + \frac{A_\varphi}{r\sin\theta} \frac{\partial B_\theta}{\partial \varphi} + \frac{A_\theta B_r}{r} - \frac{A_\varphi B_\varphi\cot\theta}{r} \right) &\hat{\boldsymbol \theta} \\ + \left( A_r \frac{\partial B_\varphi}{\partial r} + \frac{A_\theta}{r} \frac{\partial B_\varphi}{\partial \theta} + \frac{A_\varphi}{r\sin\theta} \frac{\partial B_\varphi}{\partial \varphi} + \frac{A_\varphi B_r}{r} + \frac{A_\varphi B_\theta \cot\theta}{r} \right) &\hat{\boldsymbol \varphi} \end{align} , - ! Tensor (not to be confused with 2nd order tensor divergence) , \begin{align} \left(\frac{\partial T_{xx{\partial x}+\frac{\partial T_{yx{\partial y}+\frac{\partial T_{zx{\partial z}\right)&\hat{\mathbf x} \\ +\left(\frac{\partial T_{xy{\partial x}+\frac{\partial T_{yy{\partial y}+\frac{\partial T_{zy{\partial z}\right)&\hat{\mathbf y} \\ +\left(\frac{\partial T_{xz{\partial x}+\frac{\partial T_{yz{\partial y}+\frac{\partial T_{zz{\partial z}\right)&\hat{\mathbf z} \end{align} , \begin{align} \left frac{\partial T_{\rho\rho{\partial\rho}+\frac1\rho\frac{\partial T_{\varphi\rho{\partial\varphi}+\frac{\partial T_{z\rho{\partial z}+\frac1\rho(T_{\rho\rho}-T_{\varphi\varphi})\right\hat{\boldsymbol\rho} \\ +\left frac{\partial T_{\rho\varphi{\partial\rho}+\frac1\rho\frac{\partial T_{\varphi\varphi{\partial\varphi}+\frac{\partial T_{z\varphi{\partial z}+\frac1\rho(T_{\rho\varphi}+T_{\varphi\rho})\right\hat{\boldsymbol\varphi} \\ +\left frac{\partial T_{\rho z{\partial\rho}+\frac1\rho\frac{\partial T_{\varphi z{\partial\varphi}+\frac{\partial T_{zz{\partial z}+\frac{T_{\rho z\rho\right\hat{\mathbf z} \end{align} , \begin{align} \left[\frac{\partial T_{rr{\partial r}+2\frac{T_{rrr+\frac1r\frac{\partial T_{\theta r{\partial\theta}+\frac{\cot\theta}rT_{\theta r}+\frac1{r\sin\theta}\frac{\partial T_{\varphi r{\partial\varphi}-\frac1r(T_{\theta\theta}+T_{\varphi\varphi})\right]&\hat{\mathbf r} \\ +\left[\frac{\partial T_{r\theta{\partial r}+2\frac{T_{r\thetar+\frac1r\frac{\partial T_{\theta\theta{\partial\theta}+\frac{\cot\theta}rT_{\theta\theta}+\frac1{r\sin\theta}\frac{\partial T_{\varphi\theta{\partial\varphi}+\frac{T_{\theta rr-\frac{\cot\theta}rT_{\varphi\varphi}\right]&\hat{\boldsymbol\theta} \\ +\left[\frac{\partial T_{r\varphi{\partial r}+2\frac{T_{r\varphir+\frac1r\frac{\partial T_{\theta\varphi{\partial\theta}+\frac1{r\sin\theta}\frac{\partial T_{\varphi\varphi{\partial\varphi}+\frac {T_{\varphi r{r}+\frac{\cot\theta}{r} (T_{\theta\varphi}+T_{\varphi\theta})\right]&\hat{\boldsymbol\varphi} \end{align} , - ! Differential displacement , dx \, \hat{\mathbf x} + dy \, \hat{\mathbf y} + dz \, \hat{\mathbf z} , d\rho \, \hat{\boldsymbol \rho} + \rho \, d\varphi \, \hat{\boldsymbol \varphi} + dz \, \hat{\mathbf z} , dr \, \hat{\mathbf r} + r \, d\theta \, \hat{\boldsymbol \theta} + r \, \sin\theta \, d\varphi \, \hat{\boldsymbol \varphi} , - ! Differential normal area , \begin{align} dy \, dz &\, \hat{\mathbf x} \\ {} + dx \, dz &\, \hat{\mathbf y} \\ {} + dx \, dy &\, \hat{\mathbf z} \end{align} , \begin{align} \rho \, d\varphi \, dz &\, \hat{\boldsymbol \rho} \\ {} + d\rho \, dz &\, \hat{\boldsymbol \varphi} \\ {} + \rho \, d\rho \, d\varphi &\, \hat{\mathbf z} \end{align} , \begin{align} r^2 \sin\theta \, d\theta \, d\varphi &\, \hat{\mathbf r} \\ {} + r \sin\theta \, dr \, d\varphi &\, \hat{\boldsymbol \theta} \\ {} + r \, dr \, d\theta &\, \hat{\boldsymbol \varphi} \end{align} , - ! Differential volume , dx \, dy \, dz , \rho \, d\rho \, d\varphi \, dz , r^2 \sin\theta \, dr \, d\theta \, d\varphi : This page uses \theta for the polar angle and \varphi for the azimuthal angle, which is common notation in physics. The source that is used for these formulae uses \theta for the azimuthal angle and \varphi for the polar angle, which is common mathematical notation. In order to get the mathematics formulae, switch \theta and \varphi in the formulae shown in the table above.


Calculation rules

# \operatorname{div} \, \operatorname{grad} f \equiv \nabla \cdot \nabla f \equiv \nabla^2 f # \operatorname{curl} \, \operatorname{grad} f \equiv \nabla \times \nabla f = \mathbf 0 # \operatorname{div} \, \operatorname{curl} \mathbf{A} \equiv \nabla \cdot (\nabla \times \mathbf{A}) = 0 # \operatorname{curl} \, \operatorname{curl} \mathbf{A} \equiv \nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} ( Lagrange's formula for del) # \nabla^2 (f g) = f \nabla^2 g + 2 \nabla f \cdot \nabla g + g \nabla^2 f


Cartesian derivation

\begin{align} \operatorname{div} \mathbf A = \lim_{V\to 0} \frac{\iint_{\partial V} \mathbf A \cdot d\mathbf{S{\iiint_V dV} &= \frac{A_x(x+dx)\,dy\,dz - A_x(x)\,dy\,dz + A_y(y+dy)\,dx\,dz - A_y(y)\,dx\,dz + A_z(z+dz)\,dx\,dy - A_z(z)\,dx\,dy}{dx\,dy\,dz} \\ &= \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \end{align} \begin{align} (\operatorname{curl} \mathbf A)_x = \lim_{S^{\perp \mathbf{\hat x\to 0} \frac{\int_{\partial S} \mathbf A \cdot d\mathbf{\ell{\iint_{S} dS} &= \frac{A_z(y+dy)\,dz - A_z(y)\,dz + A_y(z)\,dy - A_y(z+dz)\,dy }{dy\,dz} \\ &= \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \end{align} The expressions for (\operatorname{curl} \mathbf A)_y and (\operatorname{curl} \mathbf A)_z are found in the same way.


Cylindrical derivation

\begin{align} \operatorname{div} \mathbf A &= \lim_{V\to 0} \frac{\iint_{\partial V} \mathbf A \cdot d\mathbf{S{\iiint_V dV} \\ &= \frac{A_\rho(\rho+d\rho)(\rho+d\rho)\,d\phi\, dz - A_\rho(\rho)\rho \,d\phi \,dz + A_\phi(\phi+d\phi)\,d\rho\, dz - A_\phi(\phi)\,d\rho\, dz + A_z(z+dz)\,d\rho\, (\rho +d\rho/2)\,d\phi - A_z(z)\,d\rho (\rho +d\rho/2)\, d\phi}{\rho \,d\phi \,d\rho\, dz} \\ &= \frac 1 \rho \frac{\partial (\rho A_\rho)}{\partial \rho} + \frac 1 \rho \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{\partial z} \end{align} \begin{align} (\operatorname{curl} \mathbf A)_\rho &= \lim_{S^{\perp \boldsymbol{\hat \rho\to 0} \frac{\int_{\partial S} \mathbf A \cdot d\mathbf{\ell{\iint_{S} dS} \\ &= \frac{A_\phi (z)(\rho+d\rho)\,d\phi - A_\phi(z+dz)(\rho+d\rho)\,d\phi + A_z(\phi + d\phi)\,dz - A_z(\phi)\,dz}{(\rho+d\rho)\,d\phi \,dz} \\ &= -\frac{\partial A_\phi}{\partial z} + \frac{1}{\rho} \frac{\partial A_z}{\partial \phi} \end{align} \begin{align} (\operatorname{curl} \mathbf A)_\phi &= \lim_{S^{\perp \boldsymbol{\hat \phi\to 0} \frac{\int_{\partial S} \mathbf A \cdot d\mathbf{\ell{\iint_{S} dS} \\ &= \frac{A_z (\rho)\,dz - A_z(\rho + d\rho)\,dz + A_\rho(z+dz)\,d\rho - A_\rho(z)\,d\rho}{d\rho \,dz} \\ &= -\frac{\partial A_z}{\partial \rho} + \frac{\partial A_\rho}{\partial z} \end{align} \begin{align} (\operatorname{curl} \mathbf A)_z &= \lim_{S^{\perp \boldsymbol{\hat z\to 0} \frac{\int_{\partial S} \mathbf A \cdot d\mathbf{\ell{\iint_{S} dS} \\ &= \frac{A_\rho(\phi)\,d\rho - A_\rho(\phi + d\phi)\,d\rho + A_\phi(\rho + d\rho)(\rho + d\rho)\,d\phi - A_\phi(\rho)\rho \,d\phi}{\rho \,d\rho \,d\phi} \\ &= -\frac{1}{\rho}\frac{\partial A_\rho}{\partial \phi} + \frac{1}{\rho} \frac{\partial (\rho A_\phi)}{\partial \rho} \end{align} \begin{align} \operatorname{curl} \mathbf A &= (\operatorname{curl} \mathbf A)_\rho \hat{\boldsymbol \rho} + (\operatorname{curl} \mathbf A)_\phi \hat{\boldsymbol \phi} + (\operatorname{curl} \mathbf A)_z \hat{\boldsymbol z} \\ &= \left(\frac{1}{\rho} \frac{\partial A_z}{\partial \phi} -\frac{\partial A_\phi}{\partial z} \right) \hat{\boldsymbol \rho} + \left(\frac{\partial A_\rho}{\partial z}-\frac{\partial A_z}{\partial \rho} \right) \hat{\boldsymbol \phi} + \frac{1}{\rho}\left(\frac{\partial (\rho A_\phi)}{\partial \rho} - \frac{\partial A_\rho}{\partial \phi} \right) \hat{\boldsymbol z} \end{align}


Spherical derivation

\begin{align} \operatorname{div} \mathbf A &= \lim_{V\to 0} \frac{\iint_{\partial V} \mathbf A \cdot d\mathbf{S{\iiint_V dV} \\ &= \frac{A_r(r+dr)(r+dr)\,d\theta\, (r+dr)\sin\theta \,d\phi - A_r(r)r\,d\theta\, r\sin\theta \,d\phi + A_\theta(\theta+d\theta)\sin(\theta + d\theta)r\, dr\, d\phi - A_\theta(\theta)\sin(\theta)r \,dr \,d\phi + A_\phi(\phi + d\phi)r\,dr\, d\theta - A_\phi(\phi)r\,dr \,d\theta}{dr\,r\,d\theta\,r\sin\theta\, d\phi} \\ &= \frac{1}{r^2}\frac{\partial (r^2A_r)}{\partial r} + \frac{1}{r \sin\theta} \frac{\partial(A_\theta\sin\theta)}{\partial \theta} + \frac{1}{r \sin\theta} \frac{\partial A_\phi}{\partial \phi} \end{align} \begin{align} (\operatorname{curl} \mathbf A)_r = \lim_{S^{\perp \boldsymbol{\hat r\to 0} \frac{\int_{\partial S} \mathbf A \cdot d\mathbf{\ell{\iint_{S} dS} &= \frac{A_\theta(\phi)r \,d\theta + A_\phi(\theta + d\theta)r \sin(\theta + d\theta)\, d\phi - A_\theta(\phi + d\phi)r \,d\theta - A_\phi(\theta)r\sin(\theta)\, d\phi}{r\, d\theta\,r\sin\theta \,d\phi} \\ &= \frac{1}{r\sin\theta}\frac{\partial(A_\phi \sin\theta)}{\partial \theta} - \frac{1}{r\sin\theta} \frac{\partial A_\theta}{\partial \phi} \end{align} \begin{align} (\operatorname{curl} \mathbf A)_\theta = \lim_{S^{\perp \boldsymbol{\hat \theta\to 0} \frac{\int_{\partial S} \mathbf A \cdot d\mathbf{\ell{\iint_{S} dS} &= \frac{A_\phi(r)r \sin\theta \,d\phi + A_r(\phi + d\phi)\,dr - A_\phi(r+dr)(r+dr)\sin\theta \,d\phi - A_r(\phi)\,dr}{dr \, r \sin \theta \,d\phi} \\ &= \frac{1}{r\sin\theta}\frac{\partial A_r}{\partial \phi} - \frac{1}{r} \frac{\partial (rA_\phi)}{\partial r} \end{align} \begin{align} (\operatorname{curl} \mathbf A)_\phi = \lim_{S^{\perp \boldsymbol{\hat \phi\to 0} \frac{\int_{\partial S} \mathbf A \cdot d\mathbf{\ell{\iint_{S} dS} &= \frac{A_r(\theta)\,dr + A_\theta(r+dr)(r+dr)\,d\theta - A_r(\theta+d\theta)\,dr - A_\theta(r) r \,d\theta}{r\,dr\, d\theta} \\ &= \frac{1}{r}\frac{\partial(rA_\theta)}{\partial r} - \frac{1}{r} \frac{\partial A_r}{\partial \theta} \end{align} \operatorname{curl} \mathbf A = (\operatorname{curl} \mathbf A)_r \, \hat{\boldsymbol r} + (\operatorname{curl} \mathbf A)_\theta \, \hat{\boldsymbol \theta} + (\operatorname{curl} \mathbf A)_\phi \, \hat{\boldsymbol \phi} = \frac{1}{r\sin\theta} \left(\frac{\partial(A_\phi \sin\theta)}{\partial \theta}-\frac{\partial A_\theta}{\partial \phi} \right) \hat{\boldsymbol r} +\frac{1}{r} \left(\frac{1}{\sin\theta}\frac{\partial A_r}{\partial \phi} - \frac{\partial (rA_\phi)}{\partial r} \right) \hat{\boldsymbol \theta} + \frac{1}{r}\left(\frac{\partial(rA_\theta)}{\partial r} - \frac{\partial A_r}{\partial \theta} \right) \hat{\boldsymbol \phi}


Unit vector conversion formula

The unit vector of a coordinate parameter ''u'' is defined in such a way that a small positive change in ''u'' causes the position vector \mathbf r to change in \mathbf u direction. Therefore, \frac{\partial {\mathbf r{\partial u} = \frac{\partial{s{\partial u} \mathbf u where is the arc length parameter. For two sets of coordinate systems u_i and v_j, according to chain rule, d\mathbf r = \sum_{i} \frac{\partial \mathbf r}{\partial u_i} \, du_i = \sum_{i} \frac{\partial s}{\partial u_i} \hat{\mathbf u}_i du_i = \sum_{j} \frac{\partial s}{\partial v_j} \hat{\mathbf v}_j \, dv_j = \sum_{j}\frac{\partial s}{\partial v_j} \hat{\mathbf v}_j \sum_{i} \frac{\partial v_j}{\partial u_i} \, du_i = \sum_{i} \sum_{j} \frac{\partial s}{\partial v_j} \frac{\partial v_j}{\partial u_i} \hat{\mathbf v}_j \, du_i. Now, we isolate the ith component. For i{\neq}k, let \mathrm d u_k=0. Then divide on both sides by \mathrm d u_i to get: \frac{\partial s}{\partial u_i} \hat{\mathbf u}_i = \sum_{j} \frac{\partial s}{\partial v_j} \frac{\partial v_j}{\partial u_i} \hat{\mathbf v}_j.


See also

* Del * Orthogonal coordinates * Curvilinear coordinates * Vector fields in cylindrical and spherical coordinates


References

{{Reflist


External links


Maxima Computer Algebra system scripts
to generate some of these operators in cylindrical and spherical coordinates. Vector calculus Coordinate systems