Del in cylindrical and spherical coordinates
   HOME

TheInfoList



OR:

This is a list of some
vector calculus Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, \mathbb^3. The term ''vector calculus'' is sometimes used as a ...
formulae for working with common
curvilinear In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally inv ...
coordinate system In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are ...
s.


Notes

* This article uses the standard notation ISO 80000-2, which supersedes
ISO 31-11 ISO 31-11:1992 was the part of international standard ISO 31 that defines ''mathematical signs and symbols for use in physical sciences and technology''. It was superseded in 2009 by ISO 80000-2:2009 and subsequently revised in 2019 as ISO-80000 ...
, for
spherical coordinates In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are * the radial distance along the line connecting the point to a fixed point ...
(other sources may reverse the definitions of ''θ'' and ''φ''): ** The polar angle is denoted by \theta \in , \pi/math>: it is the angle between the ''z''-axis and the radial vector connecting the origin to the point in question. ** The azimuthal angle is denoted by \varphi \in , 2\pi/math>: it is the angle between the ''x''-axis and the projection of the radial vector onto the ''xy''-plane. * The function can be used instead of the mathematical function owing to its domain and
image An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
. The classical arctan function has an image of , whereas atan2 is defined to have an image of .


Coordinate conversions

Note that the operation \arctan\left(\frac\right) must be interpreted as the two-argument inverse tangent,
atan2 In computing and mathematics, the function (mathematics), function atan2 is the 2-Argument of a function, argument arctangent. By definition, \theta = \operatorname(y, x) is the angle measure (in radians, with -\pi 0, \\ mu \arctan\left(\fr ...
.


Unit vector conversions


Del formula

{, class="wikitable" style="text-align: center;" , + Table with the
del Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol ∇. When applied to a function defined on a one-dimensional domain, it denotes ...
operator in cartesian, cylindrical and spherical coordinates , - ! Operation !
Cartesian coordinates In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular o ...
!
Cylindrical coordinates A cylinder () has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an infinite ...
!
Spherical coordinates In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are * the radial distance along the line connecting the point to a fixed point ...
,
where is the polar angle and is the azimuthal angle , - !
Vector field In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
, A_x \hat{\mathbf x} + A_y \hat{\mathbf y} + A_z \hat{\mathbf z} , A_\rho \hat{\boldsymbol \rho} + A_\varphi \hat{\boldsymbol \varphi} + A_z \hat{\mathbf z} , A_r \hat{\mathbf r} + A_\theta \hat{\boldsymbol \theta} + A_\varphi \hat{\boldsymbol \varphi} , - !
Gradient In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
, {\partial f \over \partial x}\hat{\mathbf x} + {\partial f \over \partial y}\hat{\mathbf y} + {\partial f \over \partial z}\hat{\mathbf z} , {\partial f \over \partial \rho}\hat{\boldsymbol \rho} + {1 \over \rho}{\partial f \over \partial \varphi}\hat{\boldsymbol \varphi} + {\partial f \over \partial z}\hat{\mathbf z} , {\partial f \over \partial r}\hat{\mathbf r} + {1 \over r}{\partial f \over \partial \theta}\hat{\boldsymbol \theta} + {1 \over r\sin\theta}{\partial f \over \partial \varphi}\hat{\boldsymbol \varphi} , - !
Divergence In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the rate that the vector field alters the volume in an infinitesimal neighborhood of each point. (In 2D this "volume" refers to ...
, {\partial A_x \over \partial x} + {\partial A_y \over \partial y} + {\partial A_z \over \partial z} , {1 \over \rho}{\partial \left( \rho A_\rho \right) \over \partial \rho} + {1 \over \rho}{\partial A_\varphi \over \partial \varphi} + {\partial A_z \over \partial z} , {1 \over r^2}{\partial \left( r^2 A_r \right) \over \partial r} + {1 \over r\sin\theta}{\partial \over \partial \theta} \left( A_\theta\sin\theta \right) + {1 \over r\sin\theta}{\partial A_\varphi \over \partial \varphi} , - !
Curl cURL (pronounced like "curl", ) is a free and open source computer program for transferring data to and from Internet servers. It can download a URL from a web server over HTTP, and supports a variety of other network protocols, URI scheme ...
, \begin{align} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) &\hat{\mathbf x} \\ + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) &\hat{\mathbf y} \\ + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) &\hat{\mathbf z} \end{align} , \begin{align} \left( \frac{1}{\rho}\frac{\partial A_z}{\partial \varphi} - \frac{\partial A_\varphi}{\partial z} \right) &\hat{\boldsymbol \rho} \\ + \left( \frac{\partial A_\rho}{\partial z} - \frac{\partial A_z}{\partial \rho} \right) &\hat{\boldsymbol \varphi} \\ + \frac{1}{\rho} \left( \frac{\partial \left(\rho A_\varphi\right)}{\partial \rho} - \frac{\partial A_\rho}{\partial \varphi} \right) &\hat{\mathbf z} \end{align} , \begin{align} \frac{1}{r\sin\theta} \left( \frac{\partial}{\partial \theta} \left(A_\varphi\sin\theta \right) - \frac{\partial A_\theta}{\partial \varphi} \right) &\hat{\mathbf r} \\ {}+ \frac{1}{r} \left( \frac{1}{\sin\theta} \frac{\partial A_r}{\partial \varphi} - \frac{\partial}{\partial r} \left( r A_\varphi \right) \right) &\hat{\boldsymbol \theta} \\ {}+ \frac{1}{r} \left( \frac{\partial}{\partial r} \left( r A_{\theta} \right) - \frac{\partial A_r}{\partial \theta} \right) &\hat{\boldsymbol \varphi} \end{align} , - !
Laplace operator In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a Scalar field, scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \ ...
, {\partial^2 f \over \partial x^2} + {\partial^2 f \over \partial y^2} + {\partial^2 f \over \partial z^2} , {1 \over \rho}{\partial \over \partial \rho}\left(\rho {\partial f \over \partial \rho}\right) + {1 \over \rho^2}{\partial^2 f \over \partial \varphi^2} + {\partial^2 f \over \partial z^2} , {1 \over r^2}{\partial \over \partial r}\!\left(r^2 {\partial f \over \partial r}\right) \!+\!{1 \over r^2\!\sin\theta}{\partial \over \partial \theta}\!\left(\sin\theta {\partial f \over \partial \theta}\right) \!+\!{1 \over r^2\!\sin^2\theta}{\partial^2 f \over \partial \varphi^2} , - ! Vector gradient , \begin{align}{}&\frac{\partial A_x}{\partial x} \hat{\mathbf x} \otimes \hat{\mathbf x} + \frac{\partial A_x}{\partial y} \hat{\mathbf x} \otimes \hat{\mathbf y} + \frac{\partial A_x}{\partial z} \hat{\mathbf x} \otimes \hat{\mathbf z} \\ {}+ &\frac{\partial A_y}{\partial x} \hat{\mathbf y} \otimes \hat{\mathbf x} + \frac{\partial A_y}{\partial y} \hat{\mathbf y} \otimes \hat{\mathbf y} + \frac{\partial A_y}{\partial z} \hat{\mathbf y} \otimes \hat{\mathbf z} \\ {}+ &\frac{\partial A_z}{\partial x} \hat{\mathbf z} \otimes \hat{\mathbf x} + \frac{\partial A_z}{\partial y} \hat{\mathbf z} \otimes \hat{\mathbf y} + \frac{\partial A_z}{\partial z} \hat{\mathbf z} \otimes \hat{\mathbf z}\end{align} , \begin{align}{}&\frac{\partial A_\rho}{\partial \rho} \hat{\boldsymbol \rho} \otimes \hat{\boldsymbol \rho} + \left(\frac{1}{\rho}\frac{\partial A_\rho}{\partial \varphi}-\frac{A_\varphi}{\rho}\right) \hat{\boldsymbol \rho} \otimes \hat{\boldsymbol \varphi} + \frac{\partial A_\rho}{\partial z} \hat{\boldsymbol \rho} \otimes \hat{\mathbf z} \\ {}+ &\frac{\partial A_\varphi}{\partial \rho} \hat{\boldsymbol \varphi} \otimes \hat{\boldsymbol \rho} + \left(\frac{1}{\rho}\frac{\partial A_\varphi}{\partial \varphi}+\frac{A_\rho}{\rho}\right) \hat{\boldsymbol \varphi} \otimes \hat{\boldsymbol \varphi} + \frac{\partial A_\varphi}{\partial z} \hat{\boldsymbol \varphi} \otimes \hat{\mathbf z} \\ {}+ &\frac{\partial A_z}{\partial \rho} \hat{\mathbf z} \otimes \hat{\boldsymbol \rho} + \frac{1}{\rho}\frac{\partial A_z}{\partial \varphi} \hat{\mathbf z} \otimes \hat{\boldsymbol \varphi} + \frac{\partial A_z}{\partial z} \hat{\mathbf z} \otimes \hat{\mathbf z}\end{align} , \begin{align}{}&\frac{\partial A_r}{\partial r} \hat{\mathbf r} \otimes \hat{\mathbf r} + \left(\frac{1}{r}\frac{\partial A_r}{\partial \theta}-\frac{A_\theta}{r}\right) \hat{\mathbf r} \otimes \hat{\boldsymbol \theta} + \left(\frac{1}{r \sin\theta}\frac{\partial A_r}{\partial \varphi} - \frac{A_\varphi}{r}\right) \hat{\mathbf r} \otimes \hat{\boldsymbol \varphi} \\ {}+ &\frac{\partial A_\theta}{\partial r} \hat{\boldsymbol \theta} \otimes \hat{\mathbf r} + \left(\frac{1}{r}\frac{\partial A_\theta}{\partial \theta}+\frac{A_r}{r}\right) \hat{\boldsymbol \theta} \otimes \hat{\boldsymbol \theta} + \left(\frac{1}{r \sin\theta}\frac{\partial A_\theta}{\partial \varphi} - \cot\theta \frac{A_\varphi}{r}\right) \hat{\boldsymbol \theta} \otimes \hat{\boldsymbol \varphi} \\ {}+ &\frac{\partial A_\varphi}{\partial r} \hat{\boldsymbol \varphi} \otimes \hat{\mathbf r} + \frac{1}{r}\frac{\partial A_\varphi}{\partial \theta} \hat{\boldsymbol \varphi} \otimes \hat{\boldsymbol \theta} + \left(\frac{1}{r \sin\theta}\frac{\partial A_\varphi}{\partial \varphi} + \cot\theta \frac{A_\theta}{r} + \frac{A_r}{r}\right) \hat{\boldsymbol \varphi} \otimes \hat{\boldsymbol \varphi}\end{align} , - !
Vector Laplacian In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the ...
, \nabla^2 A_x \hat{\mathbf x} + \nabla^2 A_y \hat{\mathbf y} + \nabla^2 A_z \hat{\mathbf z} , \begin{align} \mathopen{}\left(\nabla^2 A_\rho - \frac{A_\rho}{\rho^2} - \frac{2}{\rho^2} \frac{\partial A_\varphi}{\partial \varphi}\right)\mathclose{} &\hat{\boldsymbol \rho} \\ + \mathopen{}\left(\nabla^2 A_\varphi - \frac{A_\varphi}{\rho^2} + \frac{2}{\rho^2} \frac{\partial A_\rho}{\partial \varphi}\right)\mathclose{} &\hat{\boldsymbol \varphi} \\ {}+ \nabla^2 A_z &\hat{\mathbf z} \end{align} , \begin{align} \left(\nabla^2 A_r - \frac{2 A_r}{r^2} - \frac{2}{r^2\sin\theta} \frac{\partial \left(A_\theta \sin\theta\right)}{\partial\theta} - \frac{2}{r^2\sin\theta}{\frac{\partial A_\varphi}{\partial \varphi\right) &\hat{\mathbf r} \\ + \left(\nabla^2 A_\theta - \frac{A_\theta}{r^2\sin^2\theta} + \frac{2}{r^2} \frac{\partial A_r}{\partial \theta} - \frac{2 \cos\theta}{r^2\sin^2\theta} \frac{\partial A_\varphi}{\partial \varphi}\right) &\hat{\boldsymbol \theta} \\ + \left(\nabla^2 A_\varphi - \frac{A_\varphi}{r^2\sin^2\theta} + \frac{2}{r^2\sin\theta} \frac{\partial A_r}{\partial \varphi} + \frac{2 \cos\theta}{r^2\sin^2\theta} \frac{\partial A_\theta}{\partial \varphi}\right) &\hat{\boldsymbol \varphi} \end{align} , - !
Directional derivative In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. The directional derivative of a multivariable differentiable (scalar) function along a given vect ...
, \mathbf{A} \cdot \nabla B_x \hat{\mathbf x} + \mathbf{A} \cdot \nabla B_y \hat{\mathbf y} + \mathbf{A} \cdot \nabla B_z \hat{\mathbf{z , \begin{align} \left(A_\rho \frac{\partial B_\rho}{\partial \rho}+\frac{A_\varphi}{\rho}\frac{\partial B_\rho}{\partial \varphi}+A_z\frac{\partial B_\rho}{\partial z}-\frac{A_\varphi B_\varphi}{\rho}\right) &\hat{\boldsymbol \rho} \\ + \left(A_\rho \frac{\partial B_\varphi}{\partial \rho} + \frac{A_\varphi}{\rho}\frac{\partial B_\varphi}{\partial \varphi} + A_z\frac{\partial B_\varphi}{\partial z} + \frac{A_\varphi B_\rho}{\rho}\right) &\hat{\boldsymbol \varphi}\\ + \left(A_\rho \frac{\partial B_z}{\partial \rho}+\frac{A_\varphi}{\rho}\frac{\partial B_z}{\partial \varphi}+A_z\frac{\partial B_z}{\partial z}\right) &\hat{\mathbf z} \end{align} , \begin{align} \left( A_r \frac{\partial B_r}{\partial r} + \frac{A_\theta}{r} \frac{\partial B_r}{\partial \theta} + \frac{A_\varphi}{r\sin\theta} \frac{\partial B_r}{\partial \varphi} - \frac{A_\theta B_\theta + A_\varphi B_\varphi}{r} \right) &\hat{\mathbf r} \\ + \left( A_r \frac{\partial B_\theta}{\partial r} + \frac{A_\theta}{r} \frac{\partial B_\theta}{\partial \theta} + \frac{A_\varphi}{r\sin\theta} \frac{\partial B_\theta}{\partial \varphi} + \frac{A_\theta B_r}{r} - \frac{A_\varphi B_\varphi\cot\theta}{r} \right) &\hat{\boldsymbol \theta} \\ + \left( A_r \frac{\partial B_\varphi}{\partial r} + \frac{A_\theta}{r} \frac{\partial B_\varphi}{\partial \theta} + \frac{A_\varphi}{r\sin\theta} \frac{\partial B_\varphi}{\partial \varphi} + \frac{A_\varphi B_r}{r} + \frac{A_\varphi B_\theta \cot\theta}{r} \right) &\hat{\boldsymbol \varphi} \end{align} , - ! Tensor divergence , \begin{align} \left(\frac{\partial T_{xx{\partial x}+\frac{\partial T_{yx{\partial y}+\frac{\partial T_{zx{\partial z}\right)&\hat{\mathbf x} \\ +\left(\frac{\partial T_{xy{\partial x}+\frac{\partial T_{yy{\partial y}+\frac{\partial T_{zy{\partial z}\right)&\hat{\mathbf y} \\ +\left(\frac{\partial T_{xz{\partial x}+\frac{\partial T_{yz{\partial y}+\frac{\partial T_{zz{\partial z}\right)&\hat{\mathbf z} \end{align} , \begin{align} \left frac{\partial T_{\rho\rho{\partial\rho}+\frac1\rho\frac{\partial T_{\varphi\rho{\partial\varphi}+\frac{\partial T_{z\rho{\partial z}+\frac1\rho(T_{\rho\rho}-T_{\varphi\varphi})\right\hat{\boldsymbol\rho} \\ +\left frac{\partial T_{\rho\varphi{\partial\rho}+\frac1\rho\frac{\partial T_{\varphi\varphi{\partial\varphi}+\frac{\partial T_{z\varphi{\partial z}+\frac1\rho(T_{\rho\varphi}+T_{\varphi\rho})\right\hat{\boldsymbol\varphi} \\ +\left frac{\partial T_{\rho z{\partial\rho}+\frac1\rho\frac{\partial T_{\varphi z{\partial\varphi}+\frac{\partial T_{zz{\partial z}+\frac{T_{\rho z\rho\right\hat{\mathbf z} \end{align} , \begin{align} \left[\frac{\partial T_{rr{\partial r}+2\frac{T_{rrr+\frac1r\frac{\partial T_{\theta r{\partial\theta}+\frac{\cot\theta}rT_{\theta r}+\frac1{r\sin\theta}\frac{\partial T_{\varphi r{\partial\varphi}-\frac1r(T_{\theta\theta}+T_{\varphi\varphi})\right]&\hat{\mathbf r} \\ +\left[\frac{\partial T_{r\theta{\partial r}+2\frac{T_{r\thetar+\frac1r\frac{\partial T_{\theta\theta{\partial\theta}+\frac{\cot\theta}rT_{\theta\theta}+\frac1{r\sin\theta}\frac{\partial T_{\varphi\theta{\partial\varphi}+\frac{T_{\theta rr-\frac{\cot\theta}rT_{\varphi\varphi}\right]&\hat{\boldsymbol\theta} \\ +\left[\frac{\partial T_{r\varphi{\partial r}+2\frac{T_{r\varphir+\frac1r\frac{\partial T_{\theta\varphi{\partial\theta}+\frac1{r\sin\theta}\frac{\partial T_{\varphi\varphi{\partial\varphi}+\frac {T_{\varphi r{r}+\frac{\cot\theta}{r} (T_{\theta\varphi}+T_{\varphi\theta})\right]&\hat{\boldsymbol\varphi} \end{align} , - ! Differential displacement , dx \, \hat{\mathbf x} + dy \, \hat{\mathbf y} + dz \, \hat{\mathbf z} , d\rho \, \hat{\boldsymbol \rho} + \rho \, d\varphi \, \hat{\boldsymbol \varphi} + dz \, \hat{\mathbf z} , dr \, \hat{\mathbf r} + r \, d\theta \, \hat{\boldsymbol \theta} + r \, \sin\theta \, d\varphi \, \hat{\boldsymbol \varphi} , - ! Differential normal area , \begin{align} dy \, dz &\, \hat{\mathbf x} \\ {} + dx \, dz &\, \hat{\mathbf y} \\ {} + dx \, dy &\, \hat{\mathbf z} \end{align} , \begin{align} \rho \, d\varphi \, dz &\, \hat{\boldsymbol \rho} \\ {} + d\rho \, dz &\, \hat{\boldsymbol \varphi} \\ {} + \rho \, d\rho \, d\varphi &\, \hat{\mathbf z} \end{align} , \begin{align} r^2 \sin\theta \, d\theta \, d\varphi &\, \hat{\mathbf r} \\ {} + r \sin\theta \, dr \, d\varphi &\, \hat{\boldsymbol \theta} \\ {} + r \, dr \, d\theta &\, \hat{\boldsymbol \varphi} \end{align} , - ! Differential volume , dx \, dy \, dz , \rho \, d\rho \, d\varphi \, dz , r^2 \sin\theta \, dr \, d\theta \, d\varphi : This page uses \theta for the polar angle and \varphi for the azimuthal angle, which is common notation in physics. The source that is used for these formulae uses \theta for the azimuthal angle and \varphi for the polar angle, which is common mathematical notation. In order to get the mathematics formulae, switch \theta and \varphi in the formulae shown in the table above. : Defined in Cartesian coordinates as \partial_i \mathbf{A} \otimes \mathbf{e}_i. An alternative definition is \mathbf{e}_i \otimes \partial_i \mathbf{A}. : Defined in Cartesian coordinates as \mathbf{e}_i \cdot \partial_i \mathbf{T}. An alternative definition is \partial_i \mathbf{T} \cdot \mathbf{e}_i.


Calculation rules

# \operatorname{div} \, \operatorname{grad} f \equiv \nabla \cdot \nabla f \equiv \nabla^2 f # \operatorname{curl} \, \operatorname{grad} f \equiv \nabla \times \nabla f = \mathbf 0 # \operatorname{div} \, \operatorname{curl} \mathbf{A} \equiv \nabla \cdot (\nabla \times \mathbf{A}) = 0 # \operatorname{curl} \, \operatorname{curl} \mathbf{A} \equiv \nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} ( Lagrange's formula for del) # \nabla^2 (f g) = f \nabla^2 g + 2 \nabla f \cdot \nabla g + g \nabla^2 f # \nabla^{2}\left(\mathbf{P}\cdot\mathbf{Q}\right)=\mathbf{Q}\cdot\nabla^{2}\mathbf{P}-\mathbf{P}\cdot\nabla^{2}\mathbf{Q}+2\nabla\cdot\left left(\mathbf{P}\cdot\nabla\right)\mathbf{Q}+\mathbf{P}\times\nabla\times\mathbf{Q}\rightquad (From )


Cartesian derivation

\begin{align} \operatorname{div} \mathbf A = \lim_{V\to 0} \frac{\iint_{\partial V} \mathbf A \cdot d\mathbf{S{\iiint_V dV} &= \frac{A_x(x+dx)\,dy\,dz - A_x(x)\,dy\,dz + A_y(y+dy)\,dx\,dz - A_y(y)\,dx\,dz + A_z(z+dz)\,dx\,dy - A_z(z)\,dx\,dy}{dx\,dy\,dz} \\ &= \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \end{align} \begin{align} (\operatorname{curl} \mathbf A)_x = \lim_{S^{\perp \mathbf{\hat x\to 0} \frac{\int_{\partial S} \mathbf A \cdot d\mathbf{\ell{\iint_{S} dS} &= \frac{A_z(y+dy)\,dz - A_z(y)\,dz + A_y(z)\,dy - A_y(z+dz)\,dy }{dy\,dz} \\ &= \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \end{align} The expressions for (\operatorname{curl} \mathbf A)_y and (\operatorname{curl} \mathbf A)_z are found in the same way.


Cylindrical derivation

\begin{align} \operatorname{div} \mathbf A &= \lim_{V\to 0} \frac{\iint_{\partial V} \mathbf A \cdot d\mathbf{S{\iiint_V dV} \\ &= \frac{A_\rho(\rho+d\rho)(\rho+d\rho)\,d\phi\, dz - A_\rho(\rho)\rho \,d\phi \,dz + A_\phi(\phi+d\phi)\,d\rho\, dz - A_\phi(\phi)\,d\rho\, dz + A_z(z+dz)\,d\rho\, (\rho +d\rho/2)\,d\phi - A_z(z)\,d\rho (\rho +d\rho/2)\, d\phi}{\rho \,d\phi \,d\rho\, dz} \\ &= \frac 1 \rho \frac{\partial (\rho A_\rho)}{\partial \rho} + \frac 1 \rho \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{\partial z} \end{align} \begin{align} (\operatorname{curl} \mathbf A)_\rho &= \lim_{S^{\perp \hat{\boldsymbol \rho\to 0} \frac{\int_{\partial S} \mathbf A \cdot d\boldsymbol{\ell{\iint_{S} dS} \\ ex&= \frac{A_\phi (z) \left(\rho+d\rho\right)\,d\phi - A_\phi(z+dz) \left(\rho+d\rho\right)\,d\phi + A_z(\phi + d\phi)\,dz - A_z(\phi)\,dz}{\left(\rho+d\rho\right)\,d\phi \,dz} \\ ex&= -\frac{\partial A_\phi}{\partial z} + \frac{1}{\rho} \frac{\partial A_z}{\partial \phi} \end{align} \begin{align} (\operatorname{curl} \mathbf A)_\phi &= \lim_{S^{\perp \boldsymbol{\hat \phi\to 0} \frac{\int_{\partial S} \mathbf A \cdot d\boldsymbol{\ell{\iint_{S} dS} \\ &= \frac{A_z (\rho)\,dz - A_z(\rho + d\rho)\,dz + A_\rho(z+dz)\,d\rho - A_\rho(z)\,d\rho}{d\rho \,dz} \\ &= -\frac{\partial A_z}{\partial \rho} + \frac{\partial A_\rho}{\partial z} \end{align} \begin{align} (\operatorname{curl} \mathbf A)_z &= \lim_{S^{\perp \hat{\boldsymbol z\to 0} \frac{\int_{\partial S} \mathbf A \cdot d\mathbf{\ell{\iint_{S} dS} \\ ex&= \frac{A_\rho(\phi)\,d\rho - A_\rho(\phi + d\phi)\,d\rho + A_\phi(\rho + d\rho)(\rho + d\rho)\,d\phi - A_\phi(\rho)\rho \,d\phi}{\rho \,d\rho \,d\phi} \\ ex&= -\frac{1}{\rho}\frac{\partial A_\rho}{\partial \phi} + \frac{1}{\rho} \frac{\partial (\rho A_\phi)}{\partial \rho} \end{align} \begin{align} \operatorname{curl} \mathbf A &= (\operatorname{curl} \mathbf A)_\rho \hat{\boldsymbol \rho} + (\operatorname{curl} \mathbf A)_\phi \hat{\boldsymbol \phi} + (\operatorname{curl} \mathbf A)_z \hat{\boldsymbol z} \\ ex&= \left(\frac{1}{\rho} \frac{\partial A_z}{\partial \phi} -\frac{\partial A_\phi}{\partial z} \right) \hat{\boldsymbol \rho} + \left(\frac{\partial A_\rho}{\partial z}-\frac{\partial A_z}{\partial \rho} \right) \hat{\boldsymbol \phi} + \frac{1}{\rho}\left(\frac{\partial (\rho A_\phi)}{\partial \rho} - \frac{\partial A_\rho}{\partial \phi} \right) \hat{\boldsymbol z} \end{align}


Spherical derivation

\begin{align} \operatorname{div} \mathbf A &= \lim_{V\to 0} \frac{\iint_{\partial V} \mathbf A \cdot d\mathbf{S{\iiint_V dV} \\ &= \frac{A_r(r+dr)(r+dr)\,d\theta\, (r+dr)\sin\theta \,d\phi - A_r(r)r\,d\theta\, r\sin\theta \,d\phi + A_\theta(\theta+d\theta)\sin(\theta + d\theta)r\, dr\, d\phi - A_\theta(\theta)\sin(\theta)r \,dr \,d\phi + A_\phi(\phi + d\phi)r\,dr\, d\theta - A_\phi(\phi)r\,dr \,d\theta}{dr\,r\,d\theta\,r\sin\theta\, d\phi} \\ &= \frac{1}{r^2}\frac{\partial (r^2A_r)}{\partial r} + \frac{1}{r \sin\theta} \frac{\partial(A_\theta\sin\theta)}{\partial \theta} + \frac{1}{r \sin\theta} \frac{\partial A_\phi}{\partial \phi} \end{align} \begin{align} (\operatorname{curl} \mathbf A)_r = \lim_{S^{\perp \boldsymbol{\hat r\to 0} \frac{\int_{\partial S} \mathbf A \cdot d\mathbf{\ell{\iint_{S} dS} &= \frac{A_\theta(\phi)r \,d\theta + A_\phi(\theta + d\theta)r \sin(\theta + d\theta)\, d\phi - A_\theta(\phi + d\phi)r \,d\theta - A_\phi(\theta)r\sin(\theta)\, d\phi}{r\, d\theta\,r\sin\theta \,d\phi} \\ &= \frac{1}{r\sin\theta}\frac{\partial(A_\phi \sin\theta)}{\partial \theta} - \frac{1}{r\sin\theta} \frac{\partial A_\theta}{\partial \phi} \end{align} \begin{align} (\operatorname{curl} \mathbf A)_\theta = \lim_{S^{\perp \boldsymbol{\hat \theta\to 0} \frac{\int_{\partial S} \mathbf A \cdot d\mathbf{\ell{\iint_{S} dS} &= \frac{A_\phi(r)r \sin\theta \,d\phi + A_r(\phi + d\phi)\,dr - A_\phi(r+dr)(r+dr)\sin\theta \,d\phi - A_r(\phi)\,dr}{dr \, r \sin \theta \,d\phi} \\ &= \frac{1}{r\sin\theta}\frac{\partial A_r}{\partial \phi} - \frac{1}{r} \frac{\partial (rA_\phi)}{\partial r} \end{align} \begin{align} (\operatorname{curl} \mathbf A)_\phi = \lim_{S^{\perp \boldsymbol{\hat \phi\to 0} \frac{\int_{\partial S} \mathbf A \cdot d\mathbf{\ell{\iint_{S} dS} &= \frac{A_r(\theta)\,dr + A_\theta(r+dr)(r+dr)\,d\theta - A_r(\theta+d\theta)\,dr - A_\theta(r) r \,d\theta}{r\,dr\, d\theta} \\ &= \frac{1}{r}\frac{\partial(rA_\theta)}{\partial r} - \frac{1}{r} \frac{\partial A_r}{\partial \theta} \end{align} \begin{align} \operatorname{curl} \mathbf A &= (\operatorname{curl} \mathbf A)_r \, \hat{\boldsymbol r} + (\operatorname{curl} \mathbf A)_\theta \, \hat{\boldsymbol \theta} + (\operatorname{curl} \mathbf A)_\phi \, \hat{\boldsymbol \phi} \\ ex&= \frac{1}{r\sin\theta} \left(\frac{\partial(A_\phi \sin\theta)}{\partial \theta}-\frac{\partial A_\theta}{\partial \phi} \right) \hat{\boldsymbol r} +\frac{1}{r} \left(\frac{1}{\sin\theta}\frac{\partial A_r}{\partial \phi} - \frac{\partial (rA_\phi)}{\partial r} \right) \hat{\boldsymbol \theta} + \frac{1}{r}\left(\frac{\partial(rA_\theta)}{\partial r} - \frac{\partial A_r}{\partial \theta} \right) \hat{\boldsymbol \phi} \end{align}


Unit vector conversion formula

The unit vector of a coordinate parameter ''u'' is defined in such a way that a small positive change in ''u'' causes the position vector \mathbf r to change in \mathbf u direction. Therefore, \frac{\partial {\mathbf r{\partial u} = \frac{\partial{s{\partial u} \mathbf u where is the arc length parameter. For two sets of coordinate systems u_i and v_j, according to
chain rule In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h ...
, d\mathbf r = \sum_{i} \frac{\partial \mathbf r}{\partial u_i} \, du_i = \sum_{i} \frac{\partial s}{\partial u_i} \hat{\mathbf u}_i du_i = \sum_{j} \frac{\partial s}{\partial v_j} \hat{\mathbf v}_j \, dv_j = \sum_{j}\frac{\partial s}{\partial v_j} \hat{\mathbf v}_j \sum_{i} \frac{\partial v_j}{\partial u_i} \, du_i = \sum_{i} \sum_{j} \frac{\partial s}{\partial v_j} \frac{\partial v_j}{\partial u_i} \hat{\mathbf v}_j \, du_i. Now, we isolate the ith component. For i{\neq}k, let \mathrm d u_k=0. Then divide on both sides by \mathrm d u_i to get: \frac{\partial s}{\partial u_i} \hat{\mathbf u}_i = \sum_{j} \frac{\partial s}{\partial v_j} \frac{\partial v_j}{\partial u_i} \hat{\mathbf v}_j.


See also

*
Del Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol ∇. When applied to a function defined on a one-dimensional domain, it denotes ...
*
Orthogonal coordinates In mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. ...
*
Curvilinear coordinates In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is invertible, l ...
* Vector fields in cylindrical and spherical coordinates


References

{{Reflist


External links


Maxima Computer Algebra system scripts
to generate some of these operators in cylindrical and spherical coordinates. Vector calculus Coordinate systems