TheInfoList

The decimal numeral system (also called base-ten positional numeral system, and occasionally called denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral system.[1] The way of denoting numbers in the decimal system is often referred to as decimal notation.[2]

A decimal numeral, or just decimal, or casually decimal number, refers generally to the notation of a number in the decimal numeral system. Decimals may sometimes be identified by a decimal separator (usually "." or "," as in 25.9703 or 3,1415).[3][4] Decimal may also refer specifically to the digits after the decimal separator, such as in "3.14 is the approximation of π to two decimals".

The numbers that may be represented in the decimal system are the decimal fractions. That is, fractions of the form a/10n, where a is an integer, and n is a non-negative integer.

The decimal system has been extended to infinite decimals for representing any real number, by using an infinite sequence of digits after the decimal separator (see Decimal representation). In this context, the decimal numerals with a finite number of non–zero places after the decimal separator are sometimes called terminating decimals. A repeating decimal is an infinite decimal that after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123144).[5] An infinite decimal represents a rational number if and only if it is a repeating decimal or has a finite number of nonzero digits.

A forerunner of modern European decimal notation was introduced by Simon Stevin in the 16th century.[34]

### Natural languages

A method of expressing every possible natural number using a set of ten symbols emerged in India. Several Indian languages show a straightforward decimal system. Many Indo-Aryan and Dravidian languages have numbers between 10 and 20 expressed in a regular pattern of addition to 10.[35]

The [34]

### Natural languages

A method of expressing every possible natural number using a set of ten symbols emerged in India. Several Indian languages show a straightforward decimal system. Many natural number using a set of ten symbols emerged in India. Several Indian languages show a straightforward decimal system. Many Indo-Aryan and Dravidian languages have numbers between 10 and 20 expressed in a regular pattern of addition to 10.[35]

The Hungarian language also uses a straightforward decimal system. All numbers between 10 and 20 are formed regularly (e.g. 11 is expressed as "tizenegy" literally "one on ten"), as with those between 20 and 100 (23 as "huszonhárom" = "three on twenty"). <

The Hungarian language also uses a straightforward decimal system. All numbers between 10 and 20 are formed regularly (e.g. 11 is expressed as "tizenegy" literally "one on ten"), as with those between 20 and 100 (23 as "huszonhárom" = "three on twenty").

A straightforward decimal rank system with a word for each order (10 , 100 , 1000 , 10,000 ), and in which 11 is expressed as ten-one and 23 as two-ten-three, and 89,345 is expressed as 8 (ten thousands) 9 (thousand) 3 (hundred) 4 (tens) 5 is found in Chinese, and in Vietnamese with a few irregularities. Japanese, Korean, and Thai have imported the Chinese decimal system. Many other languages with a decimal system have special words for the numbers between 10 and 20, and decades. For example, in English 11 is "eleven" not "ten-one" or "one-teen".

Incan languages such as Quechua and Aymara have an almost straightforward decimal system, in which 11 is expressed as ten with one and 23 as two-ten with three.

Some psychologists suggest irregularities of the English names of numerals may hinder children's counting ability.[36]

Some cultures do, or did, use other bases of numbers.

• Pre-Columbian Mesoamerican cultures such as the Maya used a base-20 system (perhaps based on using all twenty fingers and toes).
• The Yuki language in California and the Pamean languages[37] in Mexico have octal (base-8) systems because the speakers count using the spaces between their fingers rather than the fingers themselves.[38]
• The existence of a non-decimal base in the earliest traces of the Germanic languages is attested by the presence of words and glosses meaning that the count is in decimal (cognates to "ten-count" or "tenty-wise"); such would be expected if normal counting is not decimal, and unusual if it were.[39][40] Where this counting system is known, it is based on the "long hundred" = 120, and a "long thousand" of 1200. The descriptions like "long" only appear after the "small hundred" of 100 appeared with the Christians. Gordon's Introduction to Old Norse p. 293, gives number names that belong to this system. An expression cognate to 'one hundred and eighty' translates to 200, and the cognate to 'two hundred' translates to 240. Goodare details the use of the long hundred in Scotland in the Middle Ages, giving examples such as calculations where the carry implies i C (i.e. one hundred) as 120, etc. That the general population were not alarmed to encounter such numbers suggests common enough use. It is also possible to avoid hundred-like numbers by using intermediate units, such as stones and pounds, rather than a