Dark photon
   HOME

TheInfoList



OR:

The dark photon (also hidden, heavy, para-, or secluded photon) is a hypothetical hidden sector
particle In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from ...
, proposed as a
force carrier In quantum field theory, a force carrier, also known as messenger particle or intermediate particle, is a type of particle that gives rise to forces between other particles. These particles serve as the quanta of a particular kind of physical fi ...
similar to the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
of
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of ...
but potentially connected to
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
. In a minimal scenario, this new force can be introduced by extending the gauge group of the Standard Model of Particle Physics with a new abelian
U(1) In mathematics, the circle group, denoted by \mathbb T or \mathbb S^1, is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers. \mathbb T = \. ...
gauge symmetry. The corresponding new spin-1 gauge boson (i.e., the dark photon) can then couple very weakly to electrically charged particles through kinetic mixing with the ordinary photon and could thus be detected. The dark photon can also interact with the Standard Model if some of the fermions are charged under the new abelian group. The possible charging arrangements are restricted by a number of consistency requirements such as
anomaly cancellation In quantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's classical action to be a symmetry of any regularization of the full quantum theory. In classical physics, a classical anomaly is the failure of a symmet ...
and constraints coming from Yukawa matrices.


Motivation

Observations of gravitational effects that cannot be explained by visible matter alone imply the existence of matter which does not or does only very weakly couple to the known forces of nature. This dark matter dominates the matter density of the universe, but its particles (if there are any) have eluded direct and indirect detection so far. Given the rich interaction structure of the well-known Standard Model particles, which make up only the subdominant component of the universe, it is natural to think about a similarly interactive behaviour of dark sector particles. Dark photons could be part of these interactions among dark matter particles and provide a non-gravitational window (a so-called vector portal) into their existence by kinematically mixing with the Standard Model photon. Further motivation for the search for dark photons comes from several observed anomalies in astrophysics (e.g., in
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
s) that could be related to dark matter interacting with a dark photon. Arguably the most interesting application of dark photons arises in the explanation of the discrepancy between the measured and the calculated anomalous magnetic moment of the muon. This discrepancy is usually thought of as a persisting hint for physics beyond the Standard Model and should be accounted for by general new physics models. Beside the effect on electromagnetism via kinetic mixing and possible interactions with dark matter particles, dark photons (if massive) can also play the role of a dark matter candidate themselves. This is theoretically possible through the misalignment mechanism.


Theory

Adding a sector containing dark photons to the
Lagrangian Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
of the Standard Model can be done in a straightforward and minimal way by introducing a new U(1)
gauge field In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations ( Lie group ...
. The specifics of the interaction between this new field, potential new particle content (e.g., a Dirac fermion for dark matter) and the Standard Model particles are virtually only limited by the creativity of the theorist and the constraints that have already been put on certain kinds of couplings. The arguably most popular basic model involves a single new broken U(1) gauge symmetry and kinetic mixing between the corresponding dark photon field A^ and the Standard Model hypercharge fields. The operator at play is F_^\prime B^, where F_^ is the
field strength tensor In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime. Th ...
of the dark photon field and B^ denotes the field strength tensor of the Standard Model weak hypercharge fields. This term arises naturally by writing down all terms allowed by the gauge symmetry. After
electroweak symmetry breaking In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other bein ...
and diagonalising the terms containing the field strength tensors (kinetic terms) by redefining the fields, the relevant terms in the Lagrangian are \mathcal\supset-\fracF^F^_+\fracm_^A^A^_\mu+\epsilon e A^J_^ where m_is the mass of the dark photon (in this case it can be thought of as being generated by the Higgs or Stueckelberg mechanism), \epsilon is the parameter describing the kinetic mixing strength and J_^denotes the electromagnetic current with its coupling e. The fundamental parameters of this model are thus the mass of the dark photon and the strength of the kinetic mixing. Other models leave the new U(1) gauge symmetry unbroken, resulting in a massless dark photon carrying a long-range interaction. A massless dark photon, however, will experimentally be hard to distinguish from the Standard Model photon. The incorporation of new Dirac fermions as dark matter particles in this theory is uncomplicated and can be achieved by simply adding the Dirac terms to the Lagrangian.


Experiments


Direct Conversion

A massive dark photon candidate with kinetic mixing strength \epsilon could spontaneously convert to a Standard Model
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
. A cavity, with resonant frequency tuned to match the mass of a dark photon candidate hf = m_c^2, can be used to capture the resulting photon. One technique to detect the presence of signal photon in the cavity is to amplify the cavity field with a quantum limited amplifier. This method is prevalent in the search for axion dark matter. With linear amplification, however, is difficult to overcome the effective noise imposed by the
standard quantum limit A quantum limit in physics is a limit on measurement accuracy at quantum scales. Depending on the context, the limit may be absolute (such as the Heisenberg limit), or it may only apply when the experiment is conducted with naturally occurring qua ...
and search for dark photon candidates that would produce a mean cavity population much less than 1 photon. By counting the number of photons in the cavity, it is possible to subvert the quantum limit. This technique has been demonstrated by researchers at
the University of Chicago The University of Chicago (UChicago, Chicago, U of C, or UChi) is a private research university in Chicago, Illinois. Its main campus is located in Chicago's Hyde Park neighborhood. The University of Chicago is consistently ranked among the be ...
in collaboration with
Fermilab Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been opera ...
. The experiment has excluded dark photon candidates with mass centered around 24.86 μeV and \epsilon \geq 1.68 \times 10^ by using a superconducting qubit to repeatedly measure the same photon. This has enabled a search speed up of over 1,000 as compared to the conventional linear amplification technique.


See also

* * * *


References

{{Dark matter Bosons Dark matter Hypothetical elementary particles Physics beyond the Standard Model Dark concepts in astrophysics Force carriers