DNA transposon
   HOME

TheInfoList



OR:

DNA transposons are DNA sequences, sometimes referred to "jumping genes", that can move and integrate to different locations within the
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ...
. They are class II
transposable elements A transposable element (TE, transposon, or jumping gene) is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Trans ...
(TEs) that move through a DNA intermediate, as opposed to class I TEs,
retrotransposon Retrotransposons (also called Class I transposable elements or transposons via RNA intermediates) are a type of genetic component that copy and paste themselves into different genomic locations ( transposon) by converting RNA back into DNA throu ...
s, that move through an RNA intermediate. DNA transposons can move in the DNA of an organism via a single-or double-stranded DNA intermediate. DNA transposons have been found in both
prokaryotic A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
and
eukaryotic Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
organisms. They can make up a significant portion of an organism's genome, particularly in eukaryotes. In prokaryotes, TE's can facilitate the
horizontal transfer Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HG ...
of
antibiotic resistance Antimicrobial resistance (AMR) occurs when microbes evolve mechanisms that protect them from the effects of antimicrobials. All classes of microbes can evolve resistance. Fungi evolve antifungal resistance. Viruses evolve antiviral resistance. ...
or other
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
s associated with
virulence Virulence is a pathogen's or microorganism's ability to cause damage to a host. In most, especially in animal systems, virulence refers to the degree of damage caused by a microbe to its host. The pathogenicity of an organism—its ability to ...
. After replicating and propagating in a host, all transposon copies become inactivated and are lost unless the transposon passes to a genome by starting a new life cycle with horizontal transfer. It is important to note that DNA transposons do not randomly insert themselves into the genome, but rather show preference for specific sites. With regard to movement, DNA transposons can be categorized as autonomous and nonautonomous. Autonomous ones can move on their own, while nonautonomous ones require the presence of another transposable element's gene,
transposase A transposase is any of a class of enzymes capable of binding to the end of a transposon and catalysing its movement to another part of a genome, typically by a cut-and-paste mechanism or a replicative mechanism, in a process known as transpositio ...
, to move. There are three main classifications for movement for DNA transposons: "cut and paste," "
rolling circle Rolling circle replication (RCR) is a process of unidirectional nucleic acid replication that can rapidly synthesize multiple copies of circular molecules of DNA or RNA, such as plasmids, the genomes of bacteriophages, and the circular RNA geno ...
" (Helitrons), and "self-synthesizing" (Polintons). These distinct mechanisms of movement allow them to move around the genome of an organism. Since DNA transposons cannot synthesize DNA, they replicate using the host replication machinery. These three main classes are then further broken down into 23 different superfamilies characterized by their structure, sequence, and mechanism of action. DNA transposons are a cause of
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. T ...
alterations. As newly inserted DNA into active coding sequences, they can disrupt normal protein functions and cause mutations. Class II TEs make up about 3% of the human genome. Today, there are no active DNA transposons in the human genome. Therefore, the elements found in the human genome are called fossils.


Mechanisms of action


Cut and paste

Traditionally, DNA transposons move around in the genome by a cut and paste method. The system requires a
transposase A transposase is any of a class of enzymes capable of binding to the end of a transposon and catalysing its movement to another part of a genome, typically by a cut-and-paste mechanism or a replicative mechanism, in a process known as transpositio ...
enzyme that catalyzes the movement of the DNA from its current location in the genome and inserts it in a new location. Transposition requires three DNA sites on the
transposon A transposable element (TE, transposon, or jumping gene) is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Tra ...
: two at each end of the transposon called
terminal inverted repeat An inverted repeat (or IR) is a single stranded sequence of nucleotides followed downstream by its reverse complement. The intervening sequence of nucleotides between the initial sequence and the reverse complement can be any length including zero. ...
s and one at the target site. The transposase will bind to the
terminal inverted repeat An inverted repeat (or IR) is a single stranded sequence of nucleotides followed downstream by its reverse complement. The intervening sequence of nucleotides between the initial sequence and the reverse complement can be any length including zero. ...
s of the transposon and mediate synapsis of the transposon ends. The transposase enzyme then disconnects the element from the flanking DNA of the original donor site and mediates the joining reaction that links the transposon to the new insertion site. The addition of the new DNA into the target site causes short gaps on either side of the inserted segment. Host systems repair these gaps resulting in the target sequence
duplication Duplication, duplicate, and duplicator may refer to: Biology and genetics * Gene duplication, a process which can result in free mutation * Chromosomal duplication, which can cause Bloom and Rett syndrome * Polyploidy, a phenomenon also known ...
(TSD) that are characteristic of transposition. In many reactions, the transposon is completely excised from the donor site in what is called a "cut and paste" transposition and inserted into the target DNA to form a simple insertion. Occasionally, genetic material not originally in the transposable element gets copied and moved as well.


Helitrons

Helitrons are also a group of eukaryotic class II TEs. Helitrons do not follow the classical "cut and paste" mechanism. Instead, they are hypothesized to move around the genome via a rolling circle like mechanism. This process involves making a nick to a circular strand by an enzyme, which separates the DNA into two single strands. The initiation protein then remains attached to the 5' Phosphate on the nicked strand, exposing the 3' hydroxyl of the complementary strand. This allows a
polymerase A polymerase is an enzyme ( EC 2.7.7.6/7/19/48/49) that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by copying a DNA template strand using ba ...
enzyme to begin replication on the un-nicked strand. Eventually the entire strand is replicated at which point the newly synthesized DNA disassociates and is replicated in parallel with the original template strand. Helitrons encode an unknown protein which is thought to have HUH
endonuclease Endonucleases are enzymes that cleave the phosphodiester bond within a polynucleotide chain. Some, such as deoxyribonuclease I, cut DNA relatively nonspecifically (without regard to sequence), while many, typically called restriction endonuclease ...
function as well as 5' to 3'
helicase Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separatin ...
activity. This enzyme would make a single stranded cut in the DNA which explains the lack of Target Site Duplications found in Helitrons. Helitrons were also the first class of transposable elements to be discovered computationally and marked a paradigm shift in the way that whole genomes were studied.


Polintons

Polinton Polintons (also called Mavericks) are large DNA transposons which contain genes with homology to viral proteins and which are often found in eukaryotic genomes. They were first discovered in the mid-2000s and are the largest and most complex kno ...
s are also a group of eukaryotic class II TEs. As one of the most complex known DNA
transposons A transposable element (TE, transposon, or jumping gene) is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Tran ...
in eukaryotes, they make up the genomes of
protist A protist () is any eukaryotic organism (that is, an organism whose cells contain a cell nucleus) that is not an animal, plant, or fungus. While it is likely that protists share a common ancestor (the last eukaryotic common ancestor), the e ...
s,
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately fr ...
, and
animal Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and go through an ontogenetic stage ...
s, such as the
entamoeba ''Entamoeba'' is a genus of Amoebozoa found as internal parasites or commensals of animals. In 1875, Fedor Lösch described the first proven case of amoebic dysentery in St. Petersburg, Russia. He referred to the amoeba he observed microsco ...
,
soybean rust Soybean rust is a disease that affects soybeans and other legumes. It is caused by two types of fungi, '' Phakopsora pachyrhizi'', commonly known as Asian soybean rust, and '' Phakopsora meibomiae'', commonly known as New World soybean rust. ''P. ...
, and
chicken The chicken (''Gallus gallus domesticus'') is a domesticated junglefowl species, with attributes of wild species such as the grey and the Ceylon junglefowl that are originally from Southeastern Asia. Rooster or cock is a term for an adu ...
, respectively. They contain
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
s with homology to viral
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s and which are often found in
eukaryotic Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ...
s, like
polymerase A polymerase is an enzyme ( EC 2.7.7.6/7/19/48/49) that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by copying a DNA template strand using ba ...
and
retroviral A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. Once inside the host cell's cytoplasm, the virus uses its own reverse transcriptase ...
integrase Retroviral integrase (IN) is an enzyme produced by a retrovirus (such as HIV) that integrates—forms covalent links between—its genetic information into that of the host cell it infects. Retroviral INs are not to be confused with phage in ...
. However, there is no known protein functionally similarly to the viral
capsid A capsid is the protein shell of a virus, enclosing its genetic material. It consists of several oligomeric (repeating) structural subunits made of protein called protomers. The observable 3-dimensional morphological subunits, which may or ma ...
or
envelope An envelope is a common packaging item, usually made of thin, flat material. It is designed to contain a flat object, such as a letter or card. Traditional envelopes are made from sheets of paper cut to one of three shapes: a rhombus, a ...
proteins. They share their many structural characteristics with linear
plasmid A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; how ...
s,
bacteriophage A bacteriophage (), also known informally as a ''phage'' (), is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν ('), meaning "to devour". Bac ...
s and
adenoviruses Adenoviruses (members of the family ''Adenoviridae'') are medium-sized (90–100 nm), nonenveloped (without an outer lipid bilayer) viruses with an icosahedral nucleocapsid containing a double-stranded DNA genome. Their name derives from the ...
, which replicate using protein-primed DNA polymerases. Polintons have been proposed to go through a similar self-synthesis by their polymerase. Polintons, 15–20 kb long, encode up to 10 individual proteins. For replication, they utilize a protein-primed DNA polymerase B, retroviral
integrase Retroviral integrase (IN) is an enzyme produced by a retrovirus (such as HIV) that integrates—forms covalent links between—its genetic information into that of the host cell it infects. Retroviral INs are not to be confused with phage in ...
,
cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, some ...
protease A protease (also called a peptidase, proteinase, or proteolytic enzyme) is an enzyme that catalyzes (increases reaction rate or "speeds up") proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the ...
, and
ATPase ATPases (, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca2+ + Mg2+)-ATPase, HCO3−-ATPase, adenosine triphosphatase) are ...
. First, during host genome replication, a single-stranded extra-chromosomal Polinton element is excised from the host DNA using the integrase, forming a racket-like structure. Second, the Polinton undergoes replication using the DNA polymerase B, with initiation started by a terminal protein, which may encoded in some linear plasmids. Once the double stranded Polinton is generated, the integrase serves to insert it into the host genome. Polintons exhibit high variability between difference species and may tightly regulated, resulting in a low frequency rate in many genomes.


Classification

As of the most recent update in 2015, 23 superfamilies of DNA transposons were recognized and annotated in Repbase, a database of repetitive DNA elements maintained by the
Genetic Information Research Institute The Genetic Information Research Institute (GIRI) is a non-profit institution that was founded in 1994 by Jerzy Jurka. The mission of the institute "is to understand biological processes which alter the genetic makeup of different organisms, as a ba ...
:


Effects of transposons

DNA
transposons A transposable element (TE, transposon, or jumping gene) is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Tran ...
, like all transposons, are quite impactful with respect to gene expression. A sequence of DNA may insert itself into a previously functional gene and create a
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
. This can happen in three distinct ways: 1. alteration of function, 2.
chromosomal rearrangement In genetics, a chromosomal rearrangement is a mutation that is a type of chromosome abnormality involving a change in the structure of the native chromosome. Such changes may involve several different classes of events, like deletions, duplica ...
, and 3. a source of novel genetic material. Since DNA transposons may happen to take parts of genomic sequences with them, exon shuffling may occur. Exon shuffling is the creation of novel gene products due to the new placement of two previously unrelated exons through transposition. Because of their ability to alter DNA expression, transposons have become an important target of research in
genetic engineering Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including ...
.


Examples


Maize

Barbara McClintock Barbara McClintock (June 16, 1902 – September 2, 1992) was an American scientist and cytogeneticist who was awarded the 1983 Nobel Prize in Physiology or Medicine. McClintock received her PhD in botany from Cornell University in 1927. There ...
first discovered and described DNA
transposons A transposable element (TE, transposon, or jumping gene) is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Tran ...
in ''
Zea mays Maize ( ; ''Zea mays'' subsp. ''mays'', from es, maíz after tnq, mahiz), also known as corn (North American and Australian English), is a cereal grain first domesticated by indigenous peoples in southern Mexico about 10,000 years ago. The ...
'', during the 1940s; this is an achievement that would earn her the
Nobel Prize The Nobel Prizes ( ; sv, Nobelpriset ; no, Nobelprisen ) are five separate prizes that, according to Alfred Nobel's will of 1895, are awarded to "those who, during the preceding year, have conferred the greatest benefit to humankind." Alfr ...
in 1983. She described the Ac/Ds system where the Ac unit (activator) was autonomous but the Ds genomic unit required the presence of the activator in order to move. This TE is one of the most visually obvious as it was able to cause the maize to change color from yellow to brown/spotted on individual kernels.


Fruit flies

The Mariner/Tc1
transposon A transposable element (TE, transposon, or jumping gene) is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Tra ...
, found in many animals but studied in ''
Drosophila ''Drosophila'' () is a genus of flies, belonging to the family Drosophilidae, whose members are often called "small fruit flies" or (less frequently) pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many speci ...
'' was first described by Jacobson and Hartl. Mariner is well known for being able to excise and insert horizontally in to a new organism. Thousands of copies of the TE have been found interspersed in the human genome as well as other animals. The Hobo transposons in Drosophila have been extensively studied due to their ability to cause gonadal dysgenesis. The insertion and subsequent expression of hobo-like sequences results in the loss of
germ cell Germ or germs may refer to: Science * Germ (microorganism), an informal word for a pathogen * Germ cell, cell that gives rise to the gametes of an organism that reproduces sexually * Germ layer, a primary layer of cells that forms during embr ...
s in the
gonad A gonad, sex gland, or reproductive gland is a mixed gland that produces the gametes and sex hormones of an organism. Female reproductive cells are egg cells, and male reproductive cells are sperm. The male gonad, the testicle, produces sp ...
s of developing flies.


Bacteria

Bacterial
transposons A transposable element (TE, transposon, or jumping gene) is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Tran ...
are especially good at facilitating
horizontal gene transfer Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). H ...
between microbes. Transposition facilitates the transfer and accumulation of
antibiotic resistance Antimicrobial resistance (AMR) occurs when microbes evolve mechanisms that protect them from the effects of antimicrobials. All classes of microbes can evolve resistance. Fungi evolve antifungal resistance. Viruses evolve antiviral resistance. ...
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
s. In bacteria, transposable elements can easily jump between the chromosomal genome and
plasmid A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; how ...
s. In a 1982 study by Devaud et al., a multi-drug resistant strain of ''
Acinetobacter ''Acinetobacter'' is a genus of gram-negative bacteria belonging to the wider class of Gammaproteobacteria. ''Acinetobacter'' species are oxidase-negative, exhibit twitching motility, and occur in pairs under magnification. They are importan ...
'' was isolated and examined. Evidence pointed to the transfer of a plasmid in to the bacterium, where the resistance genes were transposed in to the chromosomal genome.


Genetic diversity

Transposons may have an effect on the promotion of genetic diversity of many organisms. DNA transposons can drive the evolution of genomes by promoting the relocation of sections of DNA sequences. As a result, this can alter gene regulatory regions and phenotypes. The discovery of transposons was made by
Barbara McClintock Barbara McClintock (June 16, 1902 – September 2, 1992) was an American scientist and cytogeneticist who was awarded the 1983 Nobel Prize in Physiology or Medicine. McClintock received her PhD in botany from Cornell University in 1927. There ...
who noticed that these elements could actually change the color of the
maize Maize ( ; ''Zea mays'' subsp. ''mays'', from es, maíz after tnq, mahiz), also known as corn (North American English, North American and Australian English), is a cereal grain first domesticated by indigenous peoples of Mexico, indigenous ...
plants she was studying, providing quick evidence of one outcome from transposon movement. Another example is the Tol2 DNA transposon in medaka fish that is said to be the result of their variety in pigmentation patterns. These examples show that transposons can greatly influence the process of
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
by rapidly inducing changes in the genome.


Inactivation

All DNA
transposons A transposable element (TE, transposon, or jumping gene) is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Tran ...
are inactive in the human
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ...
. Inactivated, or silenced, transposons do not result in a
phenotypic In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological pr ...
outcome and do not move around in the genome. Some are inactive because they have
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
s that affect their ability to move between chromosomes, while others are capable of moving but remain inactive due to epigenetic defenses, like DNA
methylation In the chemical sciences, methylation denotes the addition of a methyl group on a substrate, or the substitution of an atom (or group) by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These ...
and
chromatin remodeling Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out ...
. For example, chemical modifications of DNA can constrict certain areas of the genome such that transcription
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s are unable to reach them.
RNAi RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression by double-stranded RNA, through translational or transcriptional repression. Historically, RNAi was known by ...
, specifically
siRNA Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a class of double-stranded RNA at first non-coding RNA molecules, typically 20-24 (normally 21) base pairs in length, similar to miRNA, and operating ...
and
miRNA MicroRNA (miRNA) are small, single-stranded, non-coding RNA molecules containing 21 to 23 nucleotides. Found in plants, animals and some viruses, miRNAs are involved in RNA silencing and post-transcriptional regulation of gene expression. miR ...
silencing, is a naturally occurring mechanisms that, in addition to regulating eukaryotic gene expression, prevents transcription of DNA transposons. Another mode of inactivation is overproduction inhibition. When
transposase A transposase is any of a class of enzymes capable of binding to the end of a transposon and catalysing its movement to another part of a genome, typically by a cut-and-paste mechanism or a replicative mechanism, in a process known as transpositio ...
exceeds a threshold concentration, transposon activity is decreased. Since transposase can form inactive or less active monomers that will decrease transposition activity overall, a decrease in the production of transposase will also occur when large copies of those less active elements increase in the host genome.


Horizontal transfer

Horizontal transfer Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HG ...
refers to the movement of DNA information between cells of different organisms. Horizontal transfer can involve the movement of TEs from one organism into the genome of another. The insertion itself allows the TE to become an activated gene in the new host. Horizontal transfer is used by DNA transposons to prevent inactivation and complete loss of the transposon. This inactivation is termed vertical inactivation, meaning that the DNA transposon is inactive and remains as a fossil. This type of transfer is not the most common, but has been seen in the case of the wheat virulence protein ToxA, which was transferred between the different fungal pathogens ''Parastagonospora nodorum'', ''
Pyrenophora tritici-repentis ''Pyrenophora tritici-repentis'' (teleomorph) and ''Drechslera tritici-repentis'' (anamorph) is a necrotrophic plant pathogen of fungal origin, phylum Ascomycota. The pathogen causes a disease originally named yellow spot but now commonly call ...
'', and ''Bipolaris sorokiniana.'' Other examples include transfer between marine
crustacean Crustaceans (Crustacea, ) form a large, diverse arthropod taxon which includes such animals as decapoda, decapods, ostracoda, seed shrimp, branchiopoda, branchiopods, argulidae, fish lice, krill, remipedes, isopoda, isopods, barnacles, copepods, ...
s, insects of different
orders Order, ORDER or Orders may refer to: * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of ...
, and organisms of different
phyla Phyla, the plural of ''phylum'', may refer to: * Phylum, a biological taxon between Kingdom and Class * by analogy, in linguistics, a large division of possibly related languages, or a major language family which is not subordinate to another Phy ...
, such as humans and
nematode The nematodes ( or grc-gre, Νηματώδη; la, Nematoda) or roundworms constitute the phylum Nematoda (also called Nemathelminthes), with plant- parasitic nematodes also known as eelworms. They are a diverse animal phylum inhabiting a bro ...
s.


Evolution

Eukaryotic genomes differ in TE content. Recently, a study of the different superfamilies of TEs reveals that there are striking similarities between the groups. It has been hypothesized that many of them are represented in two or more Eukaryotic supergroups. This means that divergence of the transposon superfamilies could even predate the divergence of Eukaryotic supergroups.


V(D)J recombination

V(D)J recombination V(D)J recombination is the mechanism of somatic recombination that occurs only in developing lymphocytes during the early stages of T and B cell maturation. It results in the highly diverse repertoire of antibodies/immunoglobulins and T cell re ...
, although not a DNA TE, is remarkably similar to
transposons A transposable element (TE, transposon, or jumping gene) is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Tran ...
. V(D)J recombination is the process by which the large variation in antibody binding sites is created. In this mechanism, DNA is recombined in order to create genetic diversity. Because of this, it has been hypothesized that these proteins, particularly ''Rag1'' and ''Rag2'' are derived from transposable elements.


Extinction in the human genome

There is evidence suggesting that at least 40 human DNA transposon families were active during mammalian radiation and early primate lineage. Then, there was a pause in transpositional activity during the later portion of primate radiation, with a complete halt in transposon movement in an anthropoid primate ancestor. There is no evidence of any transposable element younger than about 37 million years.


References


External links


Dfam
a database of repeating DNA sequences
Repbase
a database and classification system for repeating DNA sequences
DNA transposon derived genes
in HGNC database {{Self-replicating organic structures DNA Mobile genetic elements