Crystalline fructose
   HOME

TheInfoList



OR:

Fructose, or fruit sugar, is a ketonic
simple sugar Monosaccharides (from Greek ''monos'': single, '' sacchar'': sugar), also called simple sugars, are the simplest forms of sugar and the most basic units (monomers) from which all carbohydrates are built. They are usually colorless, water-solub ...
found in many plants, where it is often bonded to
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
to form the
disaccharide A disaccharide (also called a double sugar or ''biose'') is the sugar formed when two monosaccharides are joined by glycosidic linkage. Like monosaccharides, disaccharides are simple sugars soluble in water. Three common examples are sucrose, la ...
sucrose. It is one of the three dietary monosaccharides, along with glucose and
galactose Galactose (, '' galacto-'' + ''-ose'', "milk sugar"), sometimes abbreviated Gal, is a monosaccharide sugar that is about as sweet as glucose, and about 65% as sweet as sucrose. It is an aldohexose and a C-4 epimer of glucose. A galactose molecu ...
, that are absorbed by the gut directly into the blood of the portal vein during
digestion Digestion is the breakdown of large insoluble food molecules into small water-soluble food molecules so that they can be absorbed into the watery blood plasma. In certain organisms, these smaller substances are absorbed through the small intest ...
. The liver then converts both fructose and galactose into glucose, so that dissolved glucose, known as
blood sugar Glycaemia, also known as blood sugar level, blood sugar concentration, or blood glucose level is the measure of glucose concentrated in the blood of humans or other animals. Approximately 4 grams of glucose, a simple sugar, is present in the blo ...
, is the only monosaccharide present in circulating blood. Fructose was discovered by French chemist Augustin-Pierre Dubrunfaut in 1847. The name "fructose" was coined in 1857 by the English chemist
William Allen Miller William Allen Miller FRS (17 December 1817 – 30 September 1870) was a British scientist. Life Miller was born in Ipswich, Suffolk and educated at Ackworth School and King's College London. He was related to William Allen and first cous ...
. Pure, dry fructose is a sweet, white, odorless, crystalline solid, and is the most water-soluble of all the sugars. Fructose is found in
honey Honey is a sweet and viscous substance made by several bees, the best-known of which are honey bees. Honey is made and stored to nourish bee colonies. Bees produce honey by gathering and then refining the sugary secretions of plants (primar ...
, tree and vine fruits, flowers,
berries A berry is a small, pulpy, and often edible fruit. Typically, berries are juicy, rounded, brightly colored, sweet, sour or tart, and do not have a stone or pit, although many pips or seeds may be present. Common examples are strawberries, rasp ...
, and most
root vegetables Root vegetables are underground plant parts eaten by humans as food. Although botany distinguishes true roots (such as taproots and tuberous roots) from non-roots (such as bulbs, corms, rhizomes, and tubers, although some contain both hypocotyl ...
. Commercially, fructose is derived from
sugar cane Sugarcane or sugar cane is a species of (often hybrid) tall, perennial grass (in the genus '' Saccharum'', tribe Andropogoneae) that is used for sugar production. The plants are 2–6 m (6–20 ft) tall with stout, jointed, fibrous stalk ...
, sugar beets, and
maize Maize ( ; ''Zea mays'' subsp. ''mays'', from es, maíz after tnq, mahiz), also known as corn (North American and Australian English), is a cereal grain first domesticated by indigenous peoples in southern Mexico about 10,000 years ago. The ...
.
High-fructose corn syrup High-fructose corn syrup (HFCS), also known as glucose–fructose, isoglucose and glucose–fructose syrup, is a sweetener made from corn starch. As in the production of conventional corn syrup, the starch is broken down into glucose by enzy ...
is a mixture of glucose and fructose as monosaccharides. Sucrose is a
compound Compound may refer to: Architecture and built environments * Compound (enclosure), a cluster of buildings having a shared purpose, usually inside a fence or wall ** Compound (fortification), a version of the above fortified with defensive struc ...
with one molecule of glucose
covalently A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
linked to one molecule of fructose. All forms of fructose, including those found in fruits and juices, are commonly added to foods and drinks for palatability and
taste The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste (flavor). Taste is the perception produced or stimulated when a substance in the mouth reacts chemically with taste receptor ...
enhancement, and for browning of some foods, such as baked goods. About 240,000
tonne The tonne ( or ; symbol: t) is a unit of mass equal to 1000  kilograms. It is a non-SI unit accepted for use with SI. It is also referred to as a metric ton to distinguish it from the non-metric units of the short ton ( United State ...
s of crystalline fructose are produced annually. Excessive consumption of sugars, including fructose, (especially from sugar-sweetened beverages) may contribute to insulin resistance,
obesity Obesity is a medical condition, sometimes considered a disease, in which excess body fat has accumulated to such an extent that it may negatively affect health. People are classified as obese when their body mass index (BMI)—a person's ...
, elevated
LDL cholesterol Low-density lipoprotein (LDL) is one of the five major groups of lipoprotein that transport all fat molecules around the body in extracellular water. These groups, from least dense to most dense, are chylomicrons (aka ULDL by the overall dens ...
and
triglyceride A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids (from ''wikt:tri-#Prefix, tri-'' and ''glyceride''). Triglycerides are the main constituents of body fat in humans and other ...
s, leading to metabolic syndrome. The
European Food Safety Authority The European Food Safety Authority (EFSA) is the agency of the European Union (EU) that provides independent scientific advice and communicates on existing and emerging risks associated with the food chain. EFSA was established in February 2002, ...
stated that fructose may be preferable over sucrose and glucose in sugar-sweetened foods and beverages because of its lower effect on
postprandial Prandial relates to a meal. Postprandial (from post prandium) means after eating a meal, while preprandial is before a meal. Usages of postprandial The term ''postprandial'' is used in many contexts. Gastronomic or social Refers to activities p ...
blood sugar Glycaemia, also known as blood sugar level, blood sugar concentration, or blood glucose level is the measure of glucose concentrated in the blood of humans or other animals. Approximately 4 grams of glucose, a simple sugar, is present in the blo ...
levels, while also noting the potential downside that "high intakes of fructose may lead to metabolic complications such as dyslipidaemia, insulin resistance, and increased visceral adiposity". The UK's Scientific Advisory Committee on Nutrition in 2015 disputed the claims of fructose causing metabolic disorders, stating that "there is insufficient evidence to demonstrate that fructose intake, at levels consumed in the normal UK diet, leads to adverse health outcomes independent of any effects related to its presence as a component of total and free sugars."


Etymology

The word "fructose" was coined in 1857 from the Latin for ''fructus'' (fruit) and the generic chemical suffix for sugars, ''
-ose The suffix -ose ( or ) is used in biochemistry to form the names of sugars. This Latin suffix means "full of", "abounding in", "given to", or "like". Numerous systems exist to name specific sugars more descriptively. Monosaccharides, the simple ...
''. It is also called fruit sugar and levulose or laevulose.


Chemical properties

Fructose is a 6-carbon polyhydroxyketone. Crystalline fructose adopts a cyclic six-membered structure, called β--fructopyranose, owing to the stability of its
hemiketal A hemiacetal or a hemiketal has the general formula R1R2C(OH)OR, where R1 or R2 is hydrogen or an organic substituent. They generally result from the addition of an alcohol to an aldehyde or a ketone, although the latter are sometimes called hemi ...
and internal hydrogen-bonding. In solution, fructose exists as an equilibrium mixture of the
tautomers Tautomers () are structural isomers (constitutional isomers) of chemical compounds that readily interconvert. The chemical reaction interconverting the two is called tautomerization. This conversion commonly results from the relocation of a hyd ...
β--fructo pyranose, β--fructo
furanose A furanose is a collective term for carbohydrates that have a chemical structure that includes a five-membered ring system consisting of four carbon atoms and one oxygen atom. The name derives from its similarity to the oxygen heterocycle furan, bu ...
, α--fructofuranose, α--fructopyranose and ''keto''--fructose (the non-cyclic form). The distribution of -fructose tautomers in solution is related to several variables, such as solvent and temperature. -Fructopyranose and -fructofuranose distributions in water have been identified multiple times as roughly 70% fructopyranose and 22% fructofuranose.


Reactions


Fructose and fermentation

Fructose may be anaerobically
fermented Fermentation is a metabolic process that produces chemical changes in organic substrates through the action of enzymes. In biochemistry, it is narrowly defined as the extraction of energy from carbohydrates in the absence of oxygen. In food p ...
by
yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constit ...
or
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
. Yeast enzymes convert sugar ( sucrose,
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
, or fructose, but not lactose) to
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an alcohol with the chemical formula . Its formula can be also written as or (an ethyl group linked to a ...
and
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
. Some of the carbon dioxide produced during fermentation will remain dissolved in water, where it will reach equilibrium with carbonic acid. The dissolved carbon dioxide and carbonic acid produce the carbonation in some fermented beverages, such as
champagne Champagne (, ) is a sparkling wine originated and produced in the Champagne wine region of France under the rules of the appellation, that demand specific vineyard practices, sourcing of grapes exclusively from designated places within it, ...
.


Fructose and Maillard reaction

Fructose undergoes the
Maillard reaction The Maillard reaction ( ; ) is a chemical reaction between Amino acid, amino acids and Reducing sugar, reducing sugars that gives browned food its distinctive flavor. Searing, Seared steaks, fried dumplings, cookies and other kinds of biscuits, b ...
, non-enzymatic browning, with
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
s. Because fructose exists to a greater extent in the open-chain form than does glucose, the initial stages of the Maillard reaction occur more rapidly than with glucose. Therefore, fructose has potential to contribute to changes in food palatability, as well as other nutritional effects, such as excessive browning, volume and tenderness reduction during cake preparation, and formation of
mutagenic In genetics, a mutagen is a physical or chemical agent that permanently changes genetic material, usually DNA, in an organism and thus increases the frequency of mutations above the natural background level. As many mutations can cause cancer i ...
compounds.


Dehydration

Fructose readily dehydrates to give
hydroxymethylfurfural Hydroxymethylfurfural (HMF), also 5-(hydroxymethyl)furfural, is an organic compound formed by the dehydration of reducing sugars. It is a white low-melting solid (although commercial samples are often yellow) which is highly soluble in both water ...
("HMF", ), which can be processed into liquid dimethylfuran (). This process, in the future, may become part of a low-cost, carbon-neutral system to produce replacements for petrol and diesel from plants.


Physical and functional properties


Sweetness of fructose

The primary reason that fructose is used commercially in foods and beverages, besides its low cost, is its high relative sweetness. It is the sweetest of all naturally occurring
carbohydrate In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may or m ...
s. The relative sweetness of fructose has been reported in the range of 1.2–1.8 times that of sucrose. However, it is the 6-membered ring form of fructose that is sweeter; the 5-membered ring form tastes about the same as usual table sugar. Warming fructose leads to formation of the 5-membered ring form. Therefore, the relative sweetness decreases with increasing temperature. However it has been observed that the absolute sweetness of fructose is identical at 5 °C as 50 °C and thus the relative sweetness to sucrose is not due to
anomeric In carbohydrate chemistry, a pair of anomers () is a pair of near-identical stereoisomers that differ at only the anomeric carbon, the carbon that bears the aldehyde or ketone functional group in the sugar's open-chain form. However, in order for ...
distribution but a decrease in the absolute sweetness of sucrose at higher temperatures. The sweetness of fructose is perceived earlier than that of sucrose or glucose, and the taste sensation reaches a peak (higher than that of sucrose), and diminishes more quickly than that of sucrose. Fructose can also enhance other flavors in the system. Fructose exhibits a sweetness synergy effect when used in combination with other sweeteners. The relative sweetness of fructose blended with sucrose, aspartame, or saccharin is perceived to be greater than the sweetness calculated from individual components.


Fructose solubility and crystallization

Fructose has higher water solubility than other sugars, as well as other sugar alcohols. Fructose is, therefore, difficult to crystallize from an aqueous solution. Sugar mixes containing fructose, such as candies, are softer than those containing other sugars because of the greater solubility of fructose.


Fructose hygroscopicity and humectancy

Fructose is quicker to absorb moisture and slower to release it to the environment than sucrose, glucose, or other nutritive sweeteners. Fructose is an excellent humectant and retains moisture for a long period of time even at low
relative humidity Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation, dew, or fog to be present. Humidity dep ...
(RH). Therefore, fructose can contribute a more palatable texture, and longer shelf life to the food products in which it is used.


Freezing point

Fructose has a greater effect on freezing point depression than disaccharides or oligosaccharides, which may protect the integrity of cell walls of fruit by reducing ice crystal formation. However, this characteristic may be undesirable in soft-serve or hard-frozen dairy desserts.


Fructose and starch functionality in food systems

Fructose increases starch viscosity more rapidly and achieves a higher final viscosity than sucrose because fructose lowers the temperature required during gelatinizing of starch, causing a greater final viscosity. Although some artificial sweeteners are not suitable for home-baking, many traditional recipes use fructose.


Food sources

Natural sources of fructose include fruits, vegetables (including sugar cane), and honey. Fructose is often further concentrated from these sources. The highest dietary sources of fructose, besides pure crystalline fructose, are foods containing
white sugar White sugar, also called table sugar, granulated sugar, or regular sugar, is a commonly used type of sugar, made either of beet sugar or cane sugar, which has undergone a refining process. Description The refining process completely removes ...
(sucrose),
high-fructose corn syrup High-fructose corn syrup (HFCS), also known as glucose–fructose, isoglucose and glucose–fructose syrup, is a sweetener made from corn starch. As in the production of conventional corn syrup, the starch is broken down into glucose by enzy ...
,
agave nectar ''Agave'' (; ; ) is a genus of monocots native to the hot and arid regions of the Americas and the Caribbean, although some ''Agave'' species are also native to tropical areas of North America, such as Mexico. The genus is primarily known for i ...
,
honey Honey is a sweet and viscous substance made by several bees, the best-known of which are honey bees. Honey is made and stored to nourish bee colonies. Bees produce honey by gathering and then refining the sugary secretions of plants (primar ...
, molasses, maple syrup, fruit and fruit
juice Juice is a drink made from the extraction or pressing of the natural liquid contained in fruit and vegetables. It can also refer to liquids that are flavored with concentrate or other biological food sources, such as meat or seafood, such as ...
s, as these have the highest percentages of fructose (including fructose in sucrose) per serving compared to other common foods and ingredients. Fructose exists in foods either as a free monosaccharide or bound to glucose as sucrose, a
disaccharide A disaccharide (also called a double sugar or ''biose'') is the sugar formed when two monosaccharides are joined by glycosidic linkage. Like monosaccharides, disaccharides are simple sugars soluble in water. Three common examples are sucrose, la ...
. Fructose, glucose, and sucrose may all be present in a food; however, different foods will have varying levels of each of these three sugars. The sugar contents of common fruits and vegetables are presented in Table 1. In general, in foods that contain free fructose, the ratio of fructose to glucose is approximately 1:1; that is, foods with fructose usually contain about an equal amount of free glucose. A value that is above 1 indicates a higher proportion of fructose to glucose, and below 1 a lower proportion. Some fruits have larger proportions of fructose to glucose compared to others. For example,
apple An apple is an edible fruit produced by an apple tree (''Malus domestica''). Apple trees are cultivated worldwide and are the most widely grown species in the genus ''Malus''. The tree originated in Central Asia, where its wild ancestor, ' ...
s and
pear Pears are fruits produced and consumed around the world, growing on a tree and harvested in the Northern Hemisphere in late summer into October. The pear tree and shrub are a species of genus ''Pyrus'' , in the family Rosaceae, bearing the po ...
s contain more than twice as much free fructose as glucose, while for apricots the proportion is less than half as much fructose as glucose. Apple and pear juices are of particular interest to
pediatricians Pediatrics ( also spelled ''paediatrics'' or ''pædiatrics'') is the branch of medicine that involves the medical care of infants, children, adolescents, and young adults. In the United Kingdom, paediatrics covers many of their youth until the ...
because the high concentrations of free fructose in these juices can cause
diarrhea Diarrhea, also spelled diarrhoea, is the condition of having at least three loose, liquid, or watery bowel movements each day. It often lasts for a few days and can result in dehydration due to fluid loss. Signs of dehydration often begin w ...
in children. The cells (enterocytes) that line children's small intestines have less affinity for fructose Small Intestine#Absorptions, absorption than for glucose and sucrose. Unabsorbed fructose creates higher osmolarity in the small intestine, which draws water into the gastrointestinal tract, resulting in osmotic diarrhea. This phenomenon is discussed in greater detail in the #Potential health effects, Health Effects section. Table 1 also shows the amount of sucrose found in common fruits and vegetables. Sugarcane and sugar beet have a high concentration of sucrose, and are used for commercial preparation of pure sucrose. Extracted cane or beet juice is clarified, removing impurities; and concentrated by removing excess water. The end-product is 99.9%-pure sucrose. Sucrose-containing sugars include common white sugar and powdered sugar, as well as brown sugar. : The carbohydrate figure is calculated in FoodData Central and does not always correspond to the sum of the sugars, the starch, and the "dietary fiber". All data with a unit of g (gram) are based on 100 g of a food item. The fructose/glucose ratio is calculated by dividing the sum of free fructose plus half sucrose by the sum of free glucose plus half sucrose. Fructose is also found in the manufactured Sugar substitute, sweetener, high-fructose corn syrup (HFCS), which is produced by treating corn syrup with enzymes, converting glucose into fructose. The common designations for fructose content, HFCS-42 and HFCS-55, indicate the percentage of fructose present in HFCS. HFCS-55 is commonly used as a sweetener for soft drinks, whereas HFCS-42 is used to sweeten processed foods, breakfast cereals, bakery foods, and some soft drinks.


Carbohydrate content of commercial sweeteners (percent on dry basis)

for HFCS, and USDA for fruits and vegetables and the other refined sugars. Cane and beet sugars have been used as the major sweetener in food manufacturing for centuries. However, with the development of HFCS, a significant shift occurred in the type of sweetener consumption in certain countries, particularly the United States. Contrary to the popular belief, however, with the increase of HFCS consumption, the total fructose intake relative to the total glucose intake has not dramatically changed. Granulated sugar is 99.9%-pure sucrose, which means that it has equal ratio of fructose to glucose. The most commonly used forms of HFCS, HFCS-42, and HFCS-55, have a roughly equal ratio of fructose to glucose, with minor differences. HFCS has simply replaced sucrose as a sweetener. Therefore, despite the changes in the sweetener consumption, the ratio of glucose to fructose intake has remained relatively constant.


Nutritional information

Providing 368 kcal per 100 grams of dry powder (table), fructose has 95% the Calorie, caloric value of sucrose by weight. Fructose powder is 100% carbohydrates and supplies no other nutrients in significant amount (table).


Fructose digestion and absorption in humans

Fructose exists in foods either as a monosaccharide (free fructose) or as a unit of a disaccharide (sucrose). Free fructose is absorbed directly by the intestine. When fructose is consumed in the form of sucrose, it is digested (broken down) and then absorbed as free fructose. As sucrose comes into contact with the membrane of the small intestine, the enzyme sucrase catalyzes the cleavage of sucrose to yield one glucose unit and one fructose unit, which are then each absorbed. After absorption, it enters the hepatic portal vein and is directed toward the liver. The mechanism of fructose absorption in the small intestine is not completely understood. Some evidence suggests active transport, because fructose uptake has been shown to occur against a concentration gradient. However, the majority of research supports the claim that fructose absorption occurs on the mucosal membrane via facilitated diffusion, facilitated transport involving GLUT5 transport proteins. Since the concentration of fructose is higher in the lumen, fructose is able to flow down a concentration gradient into the enterocytes, assisted by transport proteins. Fructose may be transported out of the enterocyte across the basolateral membrane by either GLUT2 or GLUT5, although the GLUT2 transporter has a greater capacity for transporting fructose, and, therefore, the majority of fructose is transported out of the enterocyte through GLUT2.


Capacity and rate of absorption

The absorption capacity for fructose in monosaccharide form ranges from less than 5 g to 50 g (per individual serving) and adapts with changes in dietary fructose intake. Studies show the greatest absorption rate occurs when glucose and fructose are administered in equal quantities. When fructose is ingested as part of the disaccharide sucrose, absorption capacity is much higher because fructose exists in a 1:1 ratio with glucose. It appears that the GLUT5 transfer rate may be saturated at low levels, and absorption is increased through joint absorption with glucose. One proposed mechanism for this phenomenon is a glucose-dependent cotransport of fructose. In addition, fructose transfer activity increases with dietary fructose intake. The presence of fructose in the lumen causes increased mRNA transcription of GLUT5, leading to increased transport proteins. High-fructose diets (>2.4 g/kg body wt) increase transport proteins within three days of intake.


Malabsorption

Several studies have measured the intestinal absorption of fructose using the hydrogen breath test. These studies indicate that fructose is not completely absorbed in the small intestine. When fructose is not absorbed in the small intestine, it is transported into the large intestine, where it is fermented by the colonic flora. Hydrogen is produced during the fermentation (biochemistry), fermentation process and dissolves into the blood of the portal vein. This hydrogen is transported to the lungs, where it is exchanged across the lungs and is measurable by the hydrogen breath test. The colonic flora also produces carbon dioxide, short-chain fatty acids, organic acids, and trace gases in the presence of unabsorbed fructose. The presence of gases and organic acids in the large intestine causes gastrointestinal symptoms such as bloating, diarrhea, flatulence, and gastrointestinal pain. Exercise immediately after consumption can exacerbate these symptoms by decreasing transit time in the small intestine, resulting in a greater amount of fructose emptied into the large intestine.


Fructose metabolism

All three dietary monosaccharides are transported into the liver by the GLUT2 transporter. Fructose and
galactose Galactose (, '' galacto-'' + ''-ose'', "milk sugar"), sometimes abbreviated Gal, is a monosaccharide sugar that is about as sweet as glucose, and about 65% as sweet as sucrose. It is an aldohexose and a C-4 epimer of glucose. A galactose molecu ...
are phosphorylation, phosphorylated in the liver by fructokinase (Michaelis–Menten kinetics, Km= 0.5 mM) and galactokinase (Km = 0.8 mM), respectively. By contrast, glucose tends to pass through the liver (Km of hepatic glucokinase = 10 mM) and can be metabolised anywhere in the body. Uptake of fructose by the liver is not regulated by insulin. However, insulin is capable of increasing the abundance and functional activity of GLUT5, fructose transporter, in skeletal muscle cells.


Fructolysis

The initial catabolism of fructose is sometimes referred to as fructolysis, in analogy with glycolysis, the catabolism of glucose. In fructolysis, the enzyme fructokinase initially produces fructose 1-phosphate, which is split by aldolase B to produce the trioses dihydroxyacetone phosphate (DHAP) and glyceraldehyde. Unlike glycolysis, in fructolysis the triose glyceraldehyde lacks a phosphate group. A third enzyme, triokinase, is therefore required to phosphorylate glyceraldehyde, producing glyceraldehyde 3-phosphate. The resulting trioses are identical to those obtained in glycolysis and can enter the gluconeogenesis, gluconeogenic pathway for glucose or glycogen synthesis, or be further catabolized through the lower glycolytic pathway to pyruvic acid, pyruvate.


Metabolism of fructose to DHAP and glyceraldehyde

The first step in the metabolism of fructose is the phosphorylation of fructose to fructose 1-phosphate by fructokinase, thus trapping fructose for metabolism in the liver. Fructose 1-phosphate then undergoes hydrolysis by aldolase B to form DHAP and glyceraldehydes; DHAP can either be isomerization, isomerized to glyceraldehyde 3-phosphate by triosephosphate isomerase or undergo reduction to glycerol 3-phosphate by glycerol 3-phosphate dehydrogenase. The glyceraldehyde produced may also be converted to glyceraldehyde 3-phosphate by glyceraldehyde kinase or further converted to glycerol 3-phosphate by glycerol 3-phosphate dehydrogenase. The metabolism of fructose at this point yields intermediates in the gluconeogenic pathway leading to glycogen synthesis as well as fatty acid and triglyceride synthesis.


Synthesis of glycogen from DHAP and glyceraldehyde 3-phosphate

The resultant glyceraldehyde formed by aldolase B then undergoes phosphorylation to glyceraldehyde 3-phosphate. Increased concentrations of DHAP and glyceraldehyde 3-phosphate in the liver drive the gluconeogenic pathway toward glucose and subsequent glycogen synthesis. It appears that fructose is a better substrate for glycogen synthesis than glucose and that glycogen replenishment takes precedence over triglyceride formation. Once liver glycogen is replenished, the intermediates of fructose metabolism are primarily directed toward triglyceride synthesis.


Synthesis of triglyceride from DHAP and glyceraldehyde 3-phosphate

Carbons from dietary fructose are found in both the free fatty acid and glycerol Moiety (chemistry), moieties of plasma triglycerides. High fructose consumption can lead to excess pyruvate production, causing a buildup of Krebs cycle intermediates. Accumulated citrate can be transported from the mitochondrion, mitochondria into the cytosol of hepatocytes, converted to acetyl CoA by citrate lyase and directed toward fatty acid synthesis. In addition, DHAP can be converted to glycerol 3-phosphate, providing the glycerol backbone for the triglyceride molecule. Triglycerides are incorporated into very-low-density lipoproteins (VLDL), which are released from the liver destined toward peripheral tissues for storage in both fat and muscle cells.


Potential health effects

In 2022, the
European Food Safety Authority The European Food Safety Authority (EFSA) is the agency of the European Union (EU) that provides independent scientific advice and communicates on existing and emerging risks associated with the food chain. EFSA was established in February 2002, ...
(EFSA) concluded there is research evidence that fructose and other added free sugars may be associated with increased risk of several chronic diseases: the risk is moderate for obesity and dyslipidemia (more than 50%), and low for non-alcoholic fatty liver disease, type 2 diabetes (from 15% to 50%) and hypertension. EFSA stated that "the intake of added and free sugars should be as low as possible in the context of a nutritionally adequate diet."


Cardiometabolic diseases

When fructose is consumed as a sweetening agent in foods or beverages, it may be associated with increased risk of obesity, diabetes, and cardiovascular disorders that are part of metabolic syndrome.


Compared with sucrose

Fructose was found to increase
triglyceride A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids (from ''wikt:tri-#Prefix, tri-'' and ''glyceride''). Triglycerides are the main constituents of body fat in humans and other ...
s in type-2 but not type-1 diabetes and moderate use of it has previously been considered acceptable as a sweetener for diabetics, possibly because it does not trigger the production of insulin by pancreatic Beta cell, β cells. For a 50 gram reference amount, fructose has a glycemic index of 23, compared with 100 for glucose and 60 for sucrose. Fructose is also 73% Fructose#Sweetness of fructose, sweeter than sucrose at room temperature, allowing diabetics to use less of it per serving. Fructose consumed before a meal may reduce the glycemic response of the meal. Fructose-sweetened food and beverage products cause less of a rise in blood glucose levels than do those manufactured with either sucrose or glucose.


See also

* Hereditary fructose intolerance * Inverted sugar syrup


References


External links

* {{Authority control Ketohexoses Nutrition Sugar substitutes