Crosswind kite power
   HOME

TheInfoList



OR:

Crosswind kite power is
power Power most often refers to: * Power (physics), meaning "rate of doing work" ** Engine power, the power put out by an engine ** Electric power * Power (social and political), the ability to influence people or events ** Abusive power Power may a ...
derived from a class of airborne wind-energy conversion systems (AWECS, also AWES) or crosswind kite power systems (CWKPS). The kite system is characterized by
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
-harvesting parts flying transverse to the direction of the ambient wind, i.e., to
crosswind A crosswind is any wind that has a perpendicular component to the line or direction of travel. This affects the aerodynamics of many forms of transport. Moving non-parallel to the wind's direction creates a crosswind component on the object and th ...
mode; sometimes the entire wing set and tether set is flown in crosswind mode. These systems at many scales from toy to power-grid-feeding sizes may be used as high-altitude wind power (HAWP) devices or low-altitude wind power (LAWP) devices without having to use towers. Flexible wings or rigid wings may be used in the kite system. A tethered wing, flying in crosswind at many times wind speed, harvests wind power from an area that is many times exceeding the wing's own area. Crosswind kite power systems have some advantages over conventional wind turbines: access to more powerful and stable wind resource, high capacity factor, capability for deployment on and offshore at comparable costs, and no need for a tower. Additionally, the wings of the CWKPS may vary in aerodynamic efficiency; the movement of cross winding tethered wings is sometimes compared with the outer parts of conventional wind turbine blades. However, a conventional traverse-to-wind rotating blade set carried aloft in a kite-power system has the blade set cutting to crosswind and is a form of crosswind kite power. Miles L. Loyd furthered studies on crosswind kite power systems in his work "Crosswind Kite Power"M. Loyd
"Crosswind Kite Power"
J. Energy, vol. 4, no. 3, pp. 106-111, 1980
in 1980. There are crosswind advocates who believe that crosswind kite power was introduced by P. Payne and C. McCutchen in their patent No. 3,987,987, filed in 1975, however, crosswind kite power was used far before such patent, e.g., in target kites for war-target practice where the cross winding power permitted high speeds to give practice to gunners.


Types of crosswind kite power systems (CWKPS)

How a system extracts energy from the wind and transfers energy to useful purposes helps to define types of crosswind kite power systems. One typing parameter regards the position of the generator or pump or tasking line or device. Another typing parameter regards how the tethers of the tether set of the kite system are utilized; the tethers holding the kiting wing elements aloft may be used in various ways to form types; tethers may simply hold working wings aloft, or they may be pulling loads on the ground, or multitasking by sending aloft-gained electricity to ground receivers or by pulling loads or by being the tasking device itself as when used for pulling people or things or cutting or grinding things. Some types are distinguished by fast motion transfer or slow motion transfer. Typing of crosswind kite power system also occurs by the nature of the wing set where count of wings and types of wings matter to designers and users; a wing set might be in a train arrangement, stack configuration, arch complex, dome mesh, coordinating family of wings, or just be a simple single-wing with single tether. Types of crosswind kite power devices are also distinguished by scale, purpose, intended life, and cost level. Typing by economic success occurs; is the system effective in the energy or task market or not? Some CWKPS are a type called lifters; they are purposed just for lifting loads, perhaps humans; the type is frequented by the use of autorotating blades that appear then to look like helicopters. A single crosswind kite power system (CWKPS) may be a hybrid complex performing aloft energy generation while also performing ground-based work through tether pulling of loads. The crosswind kite power systems that involve fluttering elements are being explored in several research centres; flutter is mined for energy conversion in a few ways. Researchers are showing types of CWKPS that are difficult to classify or type.


Tether pulling of people or goods on boards, in hulls, with skis, etc.

In the systems of this type of CWKPS, the pulling tether set drives the resisting people and objects to various points on the surface of water bodies or land or points in the atmosphere. In this type of crosswind kite power operation, the design of the resistive objects (people, boards, hulls, boats, ships, water turbines, air turbines, other wings) makes for further types. Cross winding of the upper flying wings provide power to achieve certain final objectives. The objectives are found in such as kiteboarding, kite windsurfing, snow kiting, yacht kiting, freighter-ship sailing, kite boating, and free-flight soaring and jumping. A collection of researchers have explored the historic free-flight parakite realm to where crosswind flying of the systems' wings would enable free-flight in the atmosphere; fundamentally this is a kite-string set with a wing above and a wing as the resistive anchor set; control of the separate wing set, especially in cross winding efforts mine the power of winds in different layers of the atmosphere.


Tether pulling to drive generator or pump shafts

In the systems of this type, an electrical generator, pump, or tasking line is installed on the ground. There are two subtypes, with or without a secondary vehicle. In the subtype without a secondary vehicle,"Yo-Yo" method, the tether slowly unwinds off a drum on the ground, due to the windward pull of the kite system's wing, while the wing travels crosswind, that is, left-right of the wind's ambient direction, along various paths, e.g., a figure-8 flight path, or optimized
lemniscate In algebraic geometry, a lemniscate is any of several figure-eight or -shaped curves. The word comes from the Latin "''lēmniscātus''" meaning "decorated with ribbons", from the Greek λημνίσκος meaning "ribbons",. or which alternative ...
paths, or circular paths (small or large radius). The turning drum rotates the rotor of the generator or pump through, perhaps, a high-ratio gearbox. Periodically, the wing is depowered, and the tether is reeled in, or, using the crosswind for a constant pull, the tether is re-connected to a different section of the drum while the wing is traveling in a "downwind" cycle. In some systems two tethers are used instead of one. In another subtype, a secondary vehicle is used. Such a vehicle can be a carousel, a car, railed cart, wheeled land vehicle, or even a ship on the water. The electrical generator is installed on the vehicle. The rotor of the electrical generator is brought in motion by the carousel, the axle of the car, or the screw of the ship, correspondingly.


Onboard generator

In the systems of this type, one or more flying blades and electrical generators are installed on the wing. The relative airflow rotates the blades by way of
autorotation Autorotation is a state of flight in which the main rotor system of a helicopter or other rotary-wing aircraft turns by the action of air moving up through the rotor, as with an autogyro, rather than engine power driving the rotor. Bensen, Ig ...
, an interaction with the wind, which transfer the power to the generators. Produced electrical energy is transmitted to the ground through an electrical cable laid along the tether or integrated with the tether. The same blades are sometimes used for double purpose where they are propellers positively driven by costed electricity for launching or special landing or calm-air flight-maintaining purpose.


Fast motion transfer with downwind ground receivers

In this type, an electrical generator is installed on the ground and a separate cable or belt, trailing behind the wing, transfers the power to a sprocket on the ground, which rotates the rotor of the generator. The separate belt extends at approximately the speed of the wing. Because of the high speed of that belt, the gearbox is not required.L. Goldstein
"Theoretical analysis of an airborne wind energy conversion system with a ground generator and fast motion transfer"
Energy, Int. J, 2013.


Motion transfer with upwind ground receivers

In this type an electrical generator, pump, tasking line set, or lever is installed on the ground upwind of the wing and driven by the operation of two or three or more tethers arranged from a fast-moving crosswinding flying wing set. Examples are found in the research centres of several universities and kite-energy research centres.


Lighter-than-air (LTA) assisted twin-coordinating wing sets

Several research centres are exploring twin wing sets employing tether pulling of upwind ground-based loads where the crosswinding wing sets use lighter-than-air devices to assure flight in case of lulls in the ambient wind.


LTA-kite-balloon-lofted fast-moving autorotating bladed turbine with upwind receiver of electricity

Many in-public-domain patent disclosed teachings and some current research centres are with a focus on using LTA kites to hold bladed turbines using autorotation to drive flown generators.


Flutter-based crosswind kite power systems, fast-motion method

When a wing element in a kite system is designed to have flutter occur, then that fluttering may be harvested for energy to power various loads. In flutter, the wing element travels to crosswind and then reverses to travel to crosswind in a generally opposite direction; the frequency of cycles of reversed direction is high. Flutter in traditional aviation is usually considered a bad and destructive dynamic to be designed out of an aircraft; but in CWKPS, flutter is sometimes designed into the kite system for the specific purpose of converting the wind's kinetic energy to useful purposes; the fast motion of flutter is prized by some kite-energy systems development centres. Harvesting the energy of flutter in kite systems has been done in several ways. One way is to convert the flutter energy into sound, even pleasant sound or music; purposes vary from entertaining one person or a crowd of persons; bird-scaring has been an application. Jerking tether lines by the kite-flown fluttering elements to drive loads to make electricity has been done and is being explored. Pumping fluids by use of flutter-derived energy has been proposed in the kite-energy community. And having the fluttering wing made with appropriate materials and arrangement to be a direct electric-generator part, then electricity can be generated immediately; part of the fluttering wing that is formed to be a
magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nicke ...
flutters by conductive coils forms the parts of the
electric generator In electricity generation, a generator is a device that converts motive power ( mechanical energy) or fuel-based power (chemical energy) into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, g ...
.


Traction by use of CWKPS

CWKPS are used to move objects immediately over ice, snow, land, ponds, lakes, or oceans. The movement of objects may be done for various reasons: recreation, sport, commerce, industry, science, travel, mine-clearing, defence, offense, plowing, landscaping, etc. The multitude of kite systems flown to crosswind to move kite boarders, land sailors, kite surfers, kite boaters, yachts, ships, catamarans, kayaks, power kiters, kite buggies, kite skiers, kite water skiers, etc., is keeping kite-wing manufacturers busy. Sky Sails is a leader in saving fuel in the shipping industry by using CWKPS.


Lifters using CWKPS

In this type of CWKPS the fast-motion of the flying blades or wings harvest the wind's energy to power the lifting capacity of the system. Mass loads are sometimes close-coupled with the wing set; at other times the mass lifted is distributed along the tether set. A military use of this type involved
rotor kites Rotor may refer to: Science and technology Engineering * Rotor (electric), the non-stationary part of an alternator or electric motor, operating with a stationary element so called the stator * Helicopter rotor, the rotary wing(s) of a rotorcraf ...
tethered by the kite line; a human observer gets lifted to high points for observation purposes. Some of these were used in conjunction with submarine operations with the submarine's towing motion providing the apparent wind for the CWKPS. One example is the
Focke-Achgelis Fa 330 The Focke-Achgelis Fa 330 ''Bachstelze'' ( en, Wagtail) was a type of rotary-wing kite, known as a rotor kite. They were towed behind German U-boats during World War II to allow a lookout to see further. Development Because of their low pr ...
. Lift-and-place or lift-and-drop uses occur in this type; mass loads are lifted and then placed or dropped; this is done sometimes to overcome barriers or to save ground-transportation fuel costs. When the mass that is lifted is a generator coupled with the crosswinding blades, then the AWES type is changed; this change is the foundation for the focus of some current wind power companies.


Torque transfer via rotary tether sets CWKPS

In this type, a set of kites is grouped to form a rotor, the rotary cross wind kites drive their set of tethers around a shared axis. Rings are set inside the rotary tethers to assist in holding the tethers apart. The tensile lines then transfer torque from the rotating kites to a ground based generator. On 15 December 2015 this method was the first to successfully complete the someawe.org 100*3 challenge For a prototype demonstration see


Theory

In all types of the crosswind kite power system, the useful power can be approximately described by the Loyd's formula: :P = \rho_a A C_L()^2 V^3 where P is power; CL and CD are coefficients of lift and drag, respectively; ρa is the air density at the altitude of the wing; A is the wing area and V is the wind speed. This formula disregards tether drag, wing and tether weights, change of the air density with altitude and angle of the wing motion vector to the plane, perpendicular to the wind. A more precise formula is: :P = \rho_a A C_L G^2 V^3 where G is the effective gliding ratio, taking into account the tether drag. Example: a system with a rigid wing, having dimensions 50 m x 2 m and G=15 in the 12 m/s wind will provide 40 MW of electric power.


Control of crosswind-kite-power source

Depending on the final application of a crosswind-kite-power source, differing kite control methods are used. Human control exercised during the full flight session is used in crosswind stunt kiting and kiteboarding; the same has been in place for some electricity-producing crosswind-kite-power source, e.g., by Pierre Benhaiem of France. When the crosswind-kite-power source becomes too large to handle, human-assisted devices or fully autonomous robotic control systems can be implemented. Fully passive crosswind-kite-power sources have been demonstrated, using the natural frequencies of a system to permit the absence of human or robot controls; a kited wing tossing back and forth in constant motion is a primitive passively controlled crosswind-kite-power source. Advances in computers, sensors, kite steering units, and servo-mechanisms are being applied to attain full autonomy of the launching, flying, and landing of crosswind-kite-power source that are aiming for the utility-scale energy-production market.


Challenges

Some sectors of crosswind kite power are already commercially robust; the sport low altitude traction industry is one of those sectors; toy sport crosswind kite power systems kept at low altitude must remain safe. But the sectors of high altitude larger CWKPS aiming for utility-scale electrical production to compete against other forms of energy production must overcome various challenges to achieve mainstream acceptance. Some of the challenges are regulatory permissions, including use of airspace and land; safety considerations; reliable operation in varying conditions (day, night, summer, winter, fog, high wind, low wind, etc.); third-party assessment and certification; lifecycle cost modelling.


History

In the early 1800s
George Pocock Admiral Sir George Pocock or Pococke, KB (6 March 1706 – 3 April 1792) was a British officer of the Royal Navy. Family Pocock was born in Thames Ditton in Surrey, the son of Thomas Pocock, a chaplain in the Royal Navy. His great grandfa ...
used control of kite system wings to crosswind to good effect. In the early 1900s Paul Garber produced high speed wings by two-line controls to give targets for aircraft gunners. Crosswind kite power was brought again into focus when Miles L. Loyd carefully described the mathematics and potential of crosswind kite power in 1980. In 1980 it was not possible to create an economical automatic control system to control the wings of a kite system, though passive control of crosswinding kite systems had been ancient. With the advance of computational and sensory resources fine control of the wings of a kite system became not only affordable, but cheap. In the same time significant progress was made in the materials and wing construction techniques; new types of flexible kites with good L/D ratio have been invented. Synthetic materials suitable for the wing and tether became affordable; among those materials are
UHMWPE Ultra-high-molecular-weight polyethylene (UHMWPE, UHMW) is a subset of the thermoplastic polyethylene. Also known as high-modulus polyethylene, (HMPE), it has extremely long chains, with a molecular mass usually between 3.5 and 7.5 million amu. T ...
,
carbon fibre Carbon fiber-reinforced polymers (American English), carbon-fibre-reinforced polymers (Commonwealth English), carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic (CFRP, CRP, CFRTP), also known as carbon fiber, carbon compo ...
, PETE, and rip-stop nylon. A large number of people became engaged in the sports of
kitesurfing Kiteboarding or kitesurfing is a sport that involves using wind power with a large power kite to pull a rider across a water, land, or snow surface. It combines aspects of paragliding, surfing, windsurfing, skateboarding, snowboarding, and wak ...
, kiteboarding,
kite buggying A kite buggy is a light, purpose-built vehicle powered by a traction kite (power kite). It is single-seated and has one steerable front wheel and two fixed rear wheels. The driver sits in the seat located in the middle of the vehicle and accelera ...
,
snowkiting Snowkiting or kite skiing is an outdoor winter sport where people use kite power to glide on snow or ice. The skier uses a kite to give them power over large jumps. The sport is similar to water-based kiteboarding, but with the footwear used in ...
, and
power kiting A power kite or traction kite is a large kite designed to provide significant pull to the user. Types The two most common forms are the foil, and the leading edge inflatable. There are also other less common types of power kite including ri ...
. Multiple companies and academic teams work on crosswind kite power. Most of the progress in the field has been achieved in the last 10 years.


Prospects for crosswind kite power

Enthusiasm seems to be at a high level among over a thousand workers in the crosswind kite power realm that includes scales from toy scale to utility-grid. Speculation for traveling and moving goods without fuel around the world by use of CWKPS is envisioned both by systems staying connected to the ground and some systems fully disconnected from the ground. Objectives for the future discussed in the literature regard CWKPS facing toy, sport, industry, science, commerce, energy for electrical grid, sailing, and a host of other tasking applications. For CWKPS to compete with
solar energy Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy (including solar water heating), and solar architecture. It is an essen ...
, nuclear energy,
fossil fuels A fossil fuel is a hydrocarbon-containing material formed naturally in the Earth's crust from the remains of dead plants and animals that is extracted and burned as a fuel. The main fossil fuels are coal, oil, and natural gas. Fossil fuels ma ...
, conventional
wind power Wind power or wind energy is mostly the use of wind turbines to generate electricity. Wind power is a popular, sustainable, renewable energy source that has a much smaller impact on the environment than burning fossil fuels. Historically ...
, DWKPS, or other
renewable energy Renewable energy is energy that is collected from renewable resources that are naturally replenished on a human timescale. It includes sources such as sunlight, wind, the movement of water, and geothermal heat. Although most renewable energy ...
sources, the levelized cost of energy from CWKPS will need to become competitive, proven, made known, and adopted; during CWKPS march into the future, other competing sectors will be advancing also. The variety of configurations of kite systems that will fly wings to crosswind for the enhanced power is expected to grow; however, for specific purposes and applications, some winning formats are expected to eventually shine. Placing wing elements that fly to crosswind on huge lofted rope-based arches or even net domes is being researched.


Patents that involve crosswind kite power

Various patents have been issued relating to crosswind kite power. These include:
US 3987987
''Self-erecting windmill'' by Charles McCutchen and Peter R. Payne. They filed on January 28, 1975. Their work is now in the public domain.
US8066225
''Multi-tether cross-wind kite power'' by Benjamin Tigner filed on January 19, 2009, but has a priority date of January 31, 2008. He teaches crosswind kite farming to make electricity.
US6781254
''Windmill kite'' by Bryan William Roberts with priority date of November 7, 2001. This examples crosswind kite power using flying generators driven by autorotating crosswinding turbine blades which play a second roll of being driven by costing power to fly the aircraft to altitude or bring the aircraft to safe harbor. The fast motion of the crosswinding blades is mined to drive the airborne wind generators at the hub of the rotating blades. This type of machine was featured in Popular Science magazine.
US4708078
''Propulsive wing with inflatable armature'' by Bruno T. Legaignoux, Dominique M. Legaignoux, with priority date of November 16, 1984. This patent activity was part of the growing crosswind kite power surge that is still occurring. The inflated leading edge and inflated struts permitted aggressive mining of the wind with crosswind motions and water reachability. Similar structure technology is being used in some AWES crosswind kite power research centres around the world.


Scale of crosswind kite power systems

Crosswind kite power systems are found in toy power kites, sport power kites, and experimental-handy sizes; proposed by research centres are huge utility-grid-power-feeding sizes. The power gained in toy sizes is used to excite product users; two-line and four-line crosswind toy kite-power systems fill kite festival skies. Serious sport crosswind kite power systems drive the movement of athletes around race courses in local and national competitions. Experimental-handy sizes of crosswind kite power systems are explored while furthering research toward utility-scale systems.


Timeline of uses and progress of crosswind kite power

Crosswind kite power has been put to various uses throughout history. And the variety of devices that produce crosswind kite power have a historical progression. A simple kite system sitting passively without crosswind kite
power production Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery (transmission, distribution, etc.) to end users or its storag ...
is contrasted with kite systems that fly crosswind producing greater harvesting of energy from the wind's
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acce ...
. For perspective, a timeline of crosswind kite power uses and device progress may aid in understanding crosswind kite power. * 2013: In May 2013, Google acquired a California company developing systems with onboard generators flown to crosswind in circular paths using a hybrid aircraft that double-purposes flying blades as turbine blades as well as costed-energy propellers. Their system is designed to operate as a powered aircraft when needed; the blades and generator are then converted to operate as propellers and motor. * 2012 November: Progress is exhibited b
NTS Gmbh
on X-wind (crosswind) kite power system using railed cars that pull line that drives ground generator. NTS X-Wind at EcoSummit Duesseldorf. A closed loop rail with cable-connected cars work in concert to pull the loop cable. Each railed car is pulled by a four-tethered kited wing; each wing is controlled by an autopilot or kite-steering unit. * 2012 circa: Retail market sees an entry of a crosswind kite power system b
Pacific Sky Power
The crosswind elements flown are turbine blades configured in HAWT format with generator aloft at the hub of the turning blades. Their system is not a powered aircraft during any phase of its operation. The scale is of handy one-person mobile size. A pilot lifter kite is used. * 2010 circa: Making of electricity by using onboard crosswind kite power with the crosswinding elements being autorotating HAWT blades shows by FlygenKite under French paten
FR 2955627
* 2009: Airborne Wind Energy Industry Association (AWEIA) formed to serve kite power system industry of all methods including crosswind kite power. * 1980s: Kiteboarders demonstrate effective upwind travel by use of crosswind kite power techniques. * Crosswind kite power used in military target practice by Paul E. Garber. The gained crosswind kite power was used to produce speed of the target wing to simulate enemy aircraft. * 1980: May–June: Miles L. Loyd of Lawrence Livermore National Laboratory, Livermore, California, published in the Journal of Energy, Vol. 4, No. 3, Article: No. 80-4075, Crosswind Kite Power. He focused on flying the wings of kite systems "traverse" to the ambient wind; he noted that the crosswind airspeed of the wings would allow mining the involved kinetic energy for both keeping the wings flying as well as driving other loads for secondary purposes. * 1820 circa: George Pocock demonstrated control of kite-power system to crosswind to obtain energy to draw vehicle rapidly. Many will later consider him as a father of crosswind kite power that uses the harvested wind energy for traction purposes.


Distinguish CWKPS from non-CWKPS

Kite-power systems dedicated to operating without its energy-harvesting elements flying to crosswind are not CWKPS. Examples help to clarify the two branches of kite-power systems. A simple symmetrical two-stick diamond kite let out to downwind flight while the system's tether pulls to turn an at-ground generator shaft is producing energy for use by flying downwind without flying to crosswind; such is a non-CWKPS. Some hefty downwind kite-power systems (DWKPS) are proposed by serious researchers; some DWKPS instruction is found in the patent literature; one trend involves the opening and closing of pilot-kite-lifted opening-and-closing parachutes to drive generators. Notice that some CWKPS, such as Jalbert parafoil working in figure-8 patterns to turn a ground-stationed generator, could be commissioned to operate fully without flying to crosswind, and the resultant kite-power system would then be a DWKPS. Differently, the CWKPS proposed by users of the autorotating blades stay necessarily as CWKPS. Magenn Power's flip-wing kite-balloon is a DWKPS.Magenn Air Rotor System
Similar flip-wing rotating wings are DWKPS, e.g. that taught i
Edwards and Evan patent
Benjamin Franklin Benjamin Franklin ( April 17, 1790) was an American polymath who was active as a writer, scientist, inventor, statesman, diplomat, printer, publisher, and political philosopher. Encyclopædia Britannica, Wood, 2021 Among the leading int ...
's legendary pond-crossing by kite power was a simple DWKPS; he was merely dragged downwind by a downwind-flying kite. A non-CWPKS is historically illustrated by a kite-power harvesting system such as was used by
Samuel Franklin Cody Samuel Franklin Cowdery (later known as Samuel Franklin Cody; 6 March 1867 – 7 August 1913, born Davenport, Iowa, USA)) was a Wild West showman and early pioneer of manned flight. He is most famous for his work on the large kites known a ...
for man-lifting with the involved wings set in stable downwind flight without flying to crosswind.


See also

*
Airborne wind turbine An airborne wind turbine is a design concept for a wind turbine with a rotor supported in the air without a tower, thus benefiting from the higher velocity and persistence of wind at high altitudes, while avoiding the expense of tower construction ...
* High-altitude wind power *
Unconventional wind turbines Unconventional wind turbines are those that differ significantly from the most common types in use. , the most common type of wind turbine is the three-bladed upwind horizontal-axis wind turbine (HAWT), where the turbine rotor is at the front o ...


References


External links


Airborne Wind Energy Industry Association (AWEIA)

Airborne Wind Energy Labs



''Genesis of Crosswind Kite Power'' by Miles L. Loyd in 2010 presentation

Twind video
LTA-assisted crosswind kite power system illustrated.
Ambient wind energy harvesting using cross-flow fluttering

The Advent of Airborne Wind Power by Brian MacCleery
*
Controlled aerodynamic instability phenomena The term controlled aerodynamic instability phenomena was first used by Cristiano Augusto Trein in the ''Nineteenth KKCNN Symposium on Civil Engineering'' held in Kyoto – Japan in 2006. The concept is based on the idea that aerodynamic instabilit ...
* I. Argatov, P. Rautakorpi, and R. Silvennoinen
''Estimation of the mechanical energy output of the kite wind generator''.
Renewable Energy, 34:1525–1532, 2009.
Optimal Cross-Wind Towing and Power Generation with Tethered Kites
{{Wind power Kites Renewable energy Airborne wind power