Corrosion in space
   HOME

TheInfoList



OR:

Corrosion in space is the
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engi ...
of materials occurring in
outer space Outer space, commonly shortened to space, is the expanse that exists beyond Earth and its atmosphere and between celestial bodies. Outer space is not completely empty—it is a near-perfect vacuum containing a low density of particles, pred ...
. Instead of
moisture Moisture is the presence of a liquid, especially water, often in trace amounts. Small amounts of water may be found, for example, in the air (humidity), in foods, and in some commercial products. Moisture also refers to the amount of water vapo ...
and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
acting as the primary corrosion causes, the materials exposed to outer space are subjected to
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often di ...
, bombardment by
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
and
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s, and high-energy charged particles (mostly
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s and protons from
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
). In the upper layers of the atmosphere (between 90–800 km), the atmospheric atoms, ions, and free radicals, most notably
atomic oxygen There are several known allotropes of oxygen. The most familiar is molecular oxygen (O2), present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone (O3). Others are: *A ...
, play a major role. The concentration of atomic oxygen depends on altitude and
solar activity Solar phenomena are natural phenomena which occur within the atmosphere of the Sun. These phenomena take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots. These phenomena are ...
, as the bursts of ultraviolet radiation cause photodissociation of molecular oxygen. Between 160 and 560 km, the atmosphere consists of about 90% atomic oxygen.


Materials

Corrosion in space has the highest impact on spacecraft with moving parts. Early satellites tended to develop problems with seizing bearings. Now the bearings are coated with a thin layer of
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
. Different materials resist corrosion in space differently. For example,
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
is slowly eroded by atomic oxygen, while
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
and
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
are highly corrosion-resistant. Gold-coated foils and thin layers of gold on exposed surfaces are therefore used to protect the spacecraft from the harsh environment. Thin layers of
silicon dioxide Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
deposited on the surfaces can also protect metals from the effects of atomic oxygen; e.g., the Starshine 3 satellite aluminium front mirrors were protected that way. However, the protective layers are subject to erosion by
micrometeorites A micrometeorite is a micrometeoroid that has survived entry through the Earth's atmosphere. Usually found on Earth's surface, micrometeorites differ from meteorites in that they are smaller in size, more abundant, and different in composition. T ...
. Silver builds up a layer of silver oxide, which tends to flake off and has no protective function; such gradual erosion of silver interconnects of solar cells was found to be the cause of some observed in-orbit failures.Myer Kutz - Handbook of Environmental Degradation of Materials (2005, 0815515006) Many
plastic Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptab ...
s are considerably sensitive to atomic oxygen and ionizing radiation. Coatings resistant to atomic oxygen are a common protection method, especially for plastics. Silicone-based paints and coatings are frequently employed, due to their excellent resistance to radiation and atomic oxygen. However, the silicone durability is somewhat limited, as the surface exposed to atomic oxygen is converted to
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is ...
which is brittle and tends to crack.


Solving corrosion

The process of space corrosion is being actively investigated. One of the efforts aims to design a sensor based on
zinc oxide Zinc oxide is an inorganic compound with the formula . It is a white powder that is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, food supplements, rubbers, plastics, ceramics, glass, cement ...
, able to measure the amount of atomic oxygen in the vicinity of the spacecraft; the sensor relies on drop of electrical conductivity of zinc oxide as it absorbs further oxygen.


Other problems

The
outgassing Outgassing (sometimes called offgassing, particularly when in reference to indoor air quality) is the release of a gas that was dissolved, trapped, frozen, or absorbed in some material. Outgassing can include sublimation and evaporation (which ...
of volatile silicones on
low Earth orbit A low Earth orbit (LEO) is an orbit around Earth with a period of 128 minutes or less (making at least 11.25 orbits per day) and an eccentricity less than 0.25. Most of the artificial objects in outer space are in LEO, with an altitude never mor ...
devices leads to presence of a cloud of contaminants around the spacecraft. Together with atomic oxygen bombardment, this may lead to gradual deposition of thin layers of carbon-containing silicon dioxide. Their poor transparency is a concern in case of optical systems and solar panels. Deposits of up to several micrometers were observed after 10 years of service on the solar panels of the
Mir ''Mir'' (russian: Мир, ; ) was a space station that operated in low Earth orbit from 1986 to 2001, operated by the Soviet Union and later by Russia. ''Mir'' was the first modular space station and was assembled in orbit from 1986 to&n ...
space station. Other sources of problems for structures subjected to outer space are erosion and redeposition of the materials by
sputtering In physics, sputtering is a phenomenon in which microscopic particles of a solid material are ejected from its surface, after the material is itself bombarded by energetic particles of a plasma or gas. It occurs naturally in outer space, and ca ...
caused by fast atoms and micrometeoroids. Another major concern, though of non-corrosive kind, is
material fatigue In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of ...
caused by cyclical heating and cooling and associated thermal expansion mechanical stresses.


References


External links


The Cosmos on a Shoestring: Small Spacecraft for Space and Earth Science, Appendix B: Failure in Spacecraft SystemsPDF




{{DEFAULTSORT:Corrosion In Space Corrosion Spaceflight