Correlation dimension
   HOME

TheInfoList



OR:

In
chaos theory Chaos theory is an interdisciplinary area of Scientific method, scientific study and branch of mathematics. It focuses on underlying patterns and Deterministic system, deterministic Scientific law, laws of dynamical systems that are highly sens ...
, the correlation dimension (denoted by ''ν'') is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of
fractal dimension In mathematics, a fractal dimension is a term invoked in the science of geometry to provide a rational statistical index of complexity detail in a pattern. A fractal pattern changes with the Scaling (geometry), scale at which it is measured. It ...
. For example, if we have a set of random points on the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
line between 0 and 1, the correlation dimension will be ''ν'' = 1, while if they are distributed on say, a triangle embedded in three-dimensional space (or ''m''-dimensional space), the correlation dimension will be ''ν'' = 2. This is what we would intuitively expect from a measure of dimension. The real utility of the correlation dimension is in determining the (possibly fractional) dimensions of fractal objects. There are other methods of measuring dimension (e.g. the
Hausdorff dimension In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, that was introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line ...
, the box-counting dimension, and the information dimension) but the correlation dimension has the advantage of being straightforwardly and quickly calculated, of being less noisy when only a small number of points is available, and is often in agreement with other calculations of dimension. For any set of ''N'' points in an ''m''-dimensional space :\vec x(i)= _1(i),x_2(i),\ldots,x_m(i) \qquad i=1,2,\ldots N then the
correlation integral In chaos theory, the correlation integral is the mean probability that the states at two different times are close: :C(\varepsilon) = \lim_ \frac \sum_^N \Theta(\varepsilon - \, \vec(i) - \vec(j)\, ), \quad \vec(i) \in \mathbb^m, where N is the n ...
''C''(''ε'') is calculated by: :C(\varepsilon)=\lim_ \frac where ''g'' is the total number of pairs of points which have a distance between them that is less than distance ''ε'' (a graphical representation of such close pairs is the
recurrence plot In descriptive statistics and chaos theory, a recurrence plot (RP) is a plot showing, for each moment j in time, the times at which the state of a dynamical system returns to the previous state at i, i.e., when the phase space trajectory visits rou ...
). As the number of points tends to infinity, and the distance between them tends to zero, the correlation integral, for small values of ''ε'', will take the form: :C(\varepsilon) \sim \varepsilon^\nu If the number of points is sufficiently large, and evenly distributed, a log-log graph of the correlation integral versus ''ε'' will yield an estimate of ''ν''. This idea can be qualitatively understood by realizing that for higher-dimensional objects, there will be more ways for points to be close to each other, and so the number of pairs close to each other will rise more rapidly for higher dimensions. Grassberger and Procaccia introduced the technique in 1983; the article gives the results of such estimates for a number of fractal objects, as well as comparing the values to other measures of fractal dimension. The technique can be used to distinguish between (deterministic) chaotic and truly random behavior, although it may not be good at detecting deterministic behavior if the deterministic generating mechanism is very complex. As an example, in the "Sun in Time" article, the method was used to show that the number of
sunspot Sunspots are temporary spots on the Sun's surface that are darker than the surrounding area. They are one of the most recognizable Solar phenomena and despite the fact that they are mostly visible in the solar photosphere they usually aff ...
s on the
sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
, after accounting for the known cycles such as the daily and 11-year cycles, is very likely not random noise, but rather chaotic noise, with a low-dimensional fractal attractor.


See also

* Takens's theorem *
Correlation integral In chaos theory, the correlation integral is the mean probability that the states at two different times are close: :C(\varepsilon) = \lim_ \frac \sum_^N \Theta(\varepsilon - \, \vec(i) - \vec(j)\, ), \quad \vec(i) \in \mathbb^m, where N is the n ...
*
Recurrence quantification analysis Recurrence quantification analysis (RQA) is a method of nonlinear data analysis (cf. chaos theory) for the investigation of dynamical systems. It quantifies the number and duration of recurrences of a dynamical system presented by its phase space tr ...
*
Approximate entropy In statistics, an approximate entropy (ApEn) is a technique used to quantify the amount of regularity and the unpredictability of fluctuations over time-series data. For example, consider two series of data: : Series A: (0, 1, 0, 1, 0, 1, 0, 1, 0, ...


Notes

{{Fractals Chaos theory Dynamical systems Dimension theory Fractals