Collinearity
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, collinearity of a set of
points Point or points may refer to: Places * Point, Lewis, a peninsula in the Outer Hebrides, Scotland * Point, Texas, a city in Rains County, Texas, United States * Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland * Points ...
is the property of their lying on a single
line Line most often refers to: * Line (geometry), object with zero thickness and curvature that stretches to infinity * Telephone line, a single-user circuit on a telephone communication system Line, lines, The Line, or LINE may also refer to: Art ...
. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".


Points on a line

In any geometry, the set of points on a line are said to be collinear. In
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
this relation is intuitively visualized by points lying in a row on a "straight line". However, in most geometries (including Euclidean) a
line Line most often refers to: * Line (geometry), object with zero thickness and curvature that stretches to infinity * Telephone line, a single-user circuit on a telephone communication system Line, lines, The Line, or LINE may also refer to: Art ...
is typically a primitive (undefined) object type, so such visualizations will not necessarily be appropriate. A
model A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure. Models c ...
for the geometry offers an interpretation of how the points, lines and other object types relate to one another and a notion such as collinearity must be interpreted within the context of that model. For instance, in
spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry is the geometry of the two-dimensional surface of a sphere. In this context the word "sphere" refers only to the 2-dimensional surface and other terms like "ball" or "solid sp ...
, where lines are represented in the standard model by great circles of a sphere, sets of collinear points lie on the same great circle. Such points do not lie on a "straight line" in the Euclidean sense, and are not thought of as being ''in a row''. A mapping of a geometry to itself which sends lines to lines is called a
collineation In projective geometry, a collineation is a one-to-one and onto map (a bijection) from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. A collineation is thu ...
; it preserves the collinearity property. The linear maps (or linear functions) of
vector spaces In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
, viewed as geometric maps, map lines to lines; that is, they map collinear point sets to collinear point sets and so, are collineations. In
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, ...
these linear mappings are called '' homographies'' and are just one type of collineation.


Examples in Euclidean geometry


Triangles

In any triangle the following sets of points are collinear: *The
orthocenter In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to (i.e., forming a right angle with) a line containing the base (the side opposite the vertex). This line containing the opposite side is called the '' ...
, the
circumcenter In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius. Not every polyg ...
, the
centroid In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any ...
, the
Exeter point In geometry, the Exeter point is a special point associated with a plane triangle. The Exeter point is a triangle center and is designated as the center X(22) in Clark Kimberling's Encyclopedia of Triangle Centers. This was discovered in a c ...
, the de Longchamps point, and the center of the
nine-point circle In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are: * The midpoint of ea ...
are collinear, all falling on a line called the
Euler line In geometry, the Euler line, named after Leonhard Euler (), is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, includ ...
. *The de Longchamps point also has other collinearities. *Any vertex, the tangency of the opposite side with an
excircle In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. ...
, and the
Nagel point In geometry, the Nagel point (named for Christian Heinrich von Nagel) is a triangle center, one of the points associated with a given triangle whose definition does not depend on the placement or scale of the triangle. It is the point of concu ...
are collinear in a line called a splitter of the triangle. *The midpoint of any side, the point that is equidistant from it along the triangle's boundary in either direction (so these two points bisect the perimeter), and the center of the Spieker circle are collinear in a line called a
cleaver A cleaver is a large knife that varies in its shape but usually resembles a rectangular-bladed hatchet. It is largely used as a kitchen or butcher knife and is mostly intended for splitting up large pieces of soft bones and slashing through t ...
of the triangle. (The Spieker circle is the
incircle In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. ...
of the
medial triangle In Euclidean geometry, the medial triangle or midpoint triangle of a triangle is the triangle with vertices at the midpoints of the triangle's sides . It is the case of the midpoint polygon of a polygon with sides. The medial triangle is n ...
, and its center is the
center of mass In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may ...
of the
perimeter A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several pr ...
of the triangle.) *Any vertex, the tangency of the opposite side with the incircle, and the
Gergonne point In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. ...
are collinear. *From any point on the
circumcircle In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius. Not every polyg ...
of a triangle, the nearest points on each of the three extended sides of the triangle are collinear in the
Simson line In geometry, given a triangle and a point on its circumcircle, the three closest points to on lines , , and are collinear. The line through these points is the Simson line of , named for Robert Simson. The concept was first published, howeve ...
of the point on the circumcircle. *The lines connecting the feet of the
altitudes Altitude or height (also sometimes known as depth) is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context ...
intersect the opposite sides at collinear points.Johnson, Roger A., ''Advanced Euclidean Geometry'', Dover Publ., 2007 (orig. 1929). *A triangle's
incenter In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bis ...
, the midpoint of an
altitude Altitude or height (also sometimes known as depth) is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context ...
, and the point of contact of the corresponding side with the
excircle In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. ...
relative to that side are collinear.Altshiller-Court, Nathan. ''College Geometry'', Dover Publications, 1980. *
Menelaus' theorem Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ''ABC'', and a transversal line that crosses ''BC'', ''AC'', and ''AB'' at points ''D'', ''E'', and ''F'' respec ...
states that three points P_1, P_2, P_3 on the sides (some
extended Extension, extend or extended may refer to: Mathematics Logic or set theory * Axiom of extensionality * Extensible cardinal * Extension (model theory) * Extension (predicate logic), the set of tuples of values that satisfy the predicate * Ext ...
) of a triangle opposite vertices A_1,A_2, A_3 respectively are collinear if and only if the following products of segment lengths are equal: ::P_1A_2 \cdot P_2A_3 \cdot P_3A_1=P_1A_3 \cdot P_2A_1 \cdot P_3A_2. * The incenter, the centroid, and the Spieker circle's center are collinear. *The circumcenter, the Brocard midpoint, and the Lemoine point of a triangle are collinear. *Two perpendicular lines intersecting at the
orthocenter In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to (i.e., forming a right angle with) a line containing the base (the side opposite the vertex). This line containing the opposite side is called the '' ...
of a triangle each intersect each of the triangle's
extended side In plane geometry, an extended side or sideline of a polygon is the line that contains one side of the polygon. The extension of a side arises in various contexts. Triangle In an obtuse triangle, the altitudes from the acute angled vertices ...
s. The midpoints on the three sides of these points of intersection are collinear in the Droz–Farny line.


Quadrilaterals

*In a convex
quadrilateral In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, ...
whose opposite sides intersect at and , the
midpoint In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment. Formula The midpoint of a segment in ''n''-dimen ...
s of are collinear and the line through them is called the Newton line (sometimes known as the Newton-Gauss line). If the quadrilateral is a
tangential quadrilateral In Euclidean geometry, a tangential quadrilateral (sometimes just tangent quadrilateral) or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called ...
, then its incenter also lies on this line. *In a convex quadrilateral, the quasiorthocenter , the "area centroid" , and the quasicircumcenter are collinear in this order, and .. (See Quadrilateral#Remarkable points and lines in a convex quadrilateral.) *Other collinearities of a
tangential quadrilateral In Euclidean geometry, a tangential quadrilateral (sometimes just tangent quadrilateral) or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called ...
are given in Tangential quadrilateral#Collinear points. *In a
cyclic quadrilateral In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the ''circumcircle'' or ''circumscribed circle'', and the vertices are said to be ''c ...
, the
circumcenter In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius. Not every polyg ...
, the vertex centroid (the intersection of the two bimedians), and the anticenter are collinear. *In a cyclic quadrilateral, the area centroid, the vertex centroid, and the intersection of the diagonals are collinear. *In a tangential trapezoid, the tangencies of the
incircle In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. ...
with the two bases are collinear with the incenter. *In a tangential trapezoid, the midpoints of the legs are collinear with the incenter.


Hexagons

*
Pascal's theorem In projective geometry, Pascal's theorem (also known as the ''hexagrammum mysticum theorem'') states that if six arbitrary points are chosen on a conic (which may be an ellipse, parabola or hyperbola in an appropriate affine plane) and joined ...
(also known as the Hexagrammum Mysticum Theorem) states that if an arbitrary six points are chosen on a
conic section In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a ...
(i.e.,
ellipse In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in ...
,
parabola In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One descri ...
or
hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, ca ...
) and joined by line segments in any order to form a
hexagon In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has ...
, then the three pairs of opposite sides of the hexagon (extended if necessary) meet in three points which lie on a straight line, called the Pascal line of the hexagon. The converse is also true: the
Braikenridge–Maclaurin theorem In geometry, the , named for 18th century British mathematicians William Braikenridge and Colin Maclaurin, is the converse to Pascal's theorem. It states that if the three intersection points of the three pairs of lines through opposite sides o ...
states that if the three intersection points of the three pairs of lines through opposite sides of a hexagon lie on a line, then the six vertices of the hexagon lie on a conic, which may be degenerate as in
Pappus's hexagon theorem In mathematics, Pappus's hexagon theorem (attributed to Pappus of Alexandria) states that *given one set of collinear points A, B, C, and another set of collinear points a,b,c, then the intersection points X,Y,Z of line pairs Ab and aB, Ac and ...
.


Conic sections

*By
Monge's theorem In geometry, Monge's theorem, named after Gaspard Monge, states that for any three circles in a plane, none of which is completely inside one of the others, the intersection points of each of the three pairs of external tangent lines are colline ...
, for any three
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is cons ...
s in a plane, none of which is completely inside one of the others, the three intersection points of the three pairs of lines, each externally tangent to two of the circles, are collinear. *In an
ellipse In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in ...
, the center, the two foci, and the two vertices with the smallest radius of curvature are collinear, and the center and the two vertices with the greatest radius of curvature are collinear. *In a
hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, ca ...
, the center, the two foci, and the two vertices are collinear.


Cones

*The
center of mass In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may ...
of a conic solid of uniform density lies one-quarter of the way from the center of the base to the vertex, on the straight line joining the two.


Tetrahedrons

*The centroid of a tetrahedron is the midpoint between its Monge point and
circumcenter In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius. Not every polyg ...
. These points define the ''Euler line'' of the tetrahedron that is analogous to the
Euler line In geometry, the Euler line, named after Leonhard Euler (), is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, includ ...
of a triangle. The center of the tetrahedron's twelve-point sphere also lies on the Euler line.


Algebra


Collinearity of points whose coordinates are given

In coordinate geometry, in -dimensional space, a set of three or more distinct points are collinear if and only if, the matrix of the coordinates of these vectors is of
rank Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * ...
1 or less. For example, given three points :\begin X &= (x_1,\ x_2,\ \dots,\ x_n), \\ Y &= (y_1,\ y_2,\ \dots,\ y_n), \\ Z &= (z_1,\ z_2,\ \dots,\ z_n), \end if the
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
:\begin x_1 & x_2 & \dots & x_n \\ y_1 & y_2 & \dots & y_n \\ z_1 & z_2 & \dots & z_n \end is of
rank Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * ...
1 or less, the points are collinear. Equivalently, for every subset of , if the
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
:\begin 1 & x_1 & x_2 & \dots & x_n \\ 1 & y_1 & y_2 & \dots & y_n \\ 1 & z_1 & z_2 & \dots & z_n \end is of
rank Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * ...
2 or less, the points are collinear. In particular, for three points in the plane (), the above matrix is square and the points are collinear if and only if its
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if a ...
is zero; since that 3 × 3 determinant is plus or minus twice the
area of a triangle A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non-collinear ...
with those three points as vertices, this is equivalent to the statement that the three points are collinear if and only if the triangle with those points as vertices has zero area.


Collinearity of points whose pairwise distances are given

A set of at least three distinct points is called
straight Straight may refer to: Slang * Straight, slang for heterosexual ** Straight-acting, an LGBT person who does not exhibit the appearance or mannerisms of the gay stereotype * Straight, a member of the straight edge subculture Sport and games * ...
, meaning all the points are collinear, if and only if, for every three of those points , the following determinant of a
Cayley–Menger determinant In linear algebra, geometry, and trigonometry, the Cayley–Menger determinant is a formula for the content, i.e. the higher-dimensional volume, of a n-dimensional simplex in terms of the squares of all of the distances between pairs of its v ...
is zero (with meaning the distance between and , etc.): :: \det \begin 0 & d(AB)^2 & d(AC)^2 & 1 \\ d(AB)^2 & 0 & d(BC)^2 & 1 \\ d(AC)^2 & d(BC)^2 & 0 & 1 \\ 1 & 1 & 1 & 0 \end = 0. This determinant is, by
Heron's formula In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . If s = \tfrac12(a + b + c) is the semiperimeter of the triangle, the area is, :A = \sqrt. It is named after first-century ...
, equal to −16 times the square of the area of a triangle with side lengths ; so checking if this determinant equals zero is equivalent to checking whether the triangle with vertices has zero area (so the vertices are collinear). Equivalently, a set of at least three distinct points are collinear if and only if, for every three of those points with greater than or equal to each of and , the
triangle inequality In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, but ...
holds with equality.


Number theory

Two numbers and are not
coprime In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivale ...
—that is, they share a common factor other than 1—if and only if for a rectangle plotted on a
square lattice In mathematics, the square lattice is a type of lattice in a two-dimensional Euclidean space. It is the two-dimensional version of the integer lattice, denoted as . It is one of the five types of two-dimensional lattices as classified by thei ...
with vertices at , at least one interior point is collinear with and .


Concurrency (plane dual)

In various plane geometries the notion of interchanging the roles of "points" and "lines" while preserving the relationship between them is called plane duality. Given a set of collinear points, by plane duality we obtain a set of lines all of which meet at a common point. The property that this set of lines has (meeting at a common point) is called concurrency, and the lines are said to be
concurrent lines In geometry, lines in a plane or higher-dimensional space are said to be concurrent if they intersect at a single point. They are in contrast to parallel lines. Examples Triangles In a triangle, four basic types of sets of concurrent lines ar ...
. Thus, concurrency is the plane dual notion to collinearity.


Collinearity graph

Given a
partial geometry An incidence structure C=(P,L,I) consists of points P, lines L, and flags I \subseteq P \times L where a point p is said to be incident with a line l if (p,l) \in I. It is a (finite) partial geometry if there are integers s,t,\alpha\geq 1 such that ...
, where two points determine at most one line, a collinearity graph of is a
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ...
whose vertices are the points of , where two vertices are
adjacent Adjacent or adjacency may refer to: * Adjacent (graph theory), two vertices that are the endpoints of an edge in a graph * Adjacent (music), a conjunct step to a note which is next in the scale See also * Adjacent angles, two angles that share ...
if and only if they determine a line in .


Usage in statistics and econometrics

In
statistics Statistics (from German: '' Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, indust ...
, collinearity refers to a linear relationship between two
explanatory variable Dependent and independent variables are variables in mathematical modeling, statistical modeling and experimental sciences. Dependent variables receive this name because, in an experiment, their values are studied under the supposition or deman ...
s. Two variables are ''perfectly collinear'' if there is an exact linear relationship between the two, so the correlation between them is equal to 1 or −1. That is, and are perfectly collinear if there exist parameters \lambda_0 and \lambda_1 such that, for all observations , we have : X_ = \lambda_0 + \lambda_1 X_. This means that if the various observations are plotted in the plane, these points are collinear in the sense defined earlier in this article. Perfect multicollinearity refers to a situation in which explanatory variables in a
multiple regression In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the 'outcome' or 'response' variable, or a 'label' in machine learning parlance) and one ...
model are perfectly linearly related, according to : X_ = \lambda_0 + \lambda_1 X_ + \lambda_2 X_ + \dots + \lambda_ X_ for all observations . In practice, we rarely face perfect multicollinearity in a data set. More commonly, the issue of multicollinearity arises when there is a "strong linear relationship" among two or more independent variables, meaning that : X_ = \lambda_0 + \lambda_1 X_ + \lambda_2 X_ + \dots + \lambda_ X_ + \varepsilon_i where the variance of \varepsilon_i is relatively small. The concept of ''lateral collinearity'' expands on this traditional view, and refers to collinearity between explanatory and criteria (i.e., explained) variables.


Usage in other areas


Antenna arrays

In
telecommunication Telecommunication is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that ...
s, a collinear (or co-linear) antenna array is an
array An array is a systematic arrangement of similar objects, usually in rows and columns. Things called an array include: {{TOC right Music * In twelve-tone and serial composition, the presentation of simultaneous twelve-tone sets such that the ...
of
dipole antenna In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole wi ...
s mounted in such a manner that the corresponding elements of each
antenna Antenna ( antennas or antennae) may refer to: Science and engineering * Antenna (radio), also known as an aerial, a transducer designed to transmit or receive electromagnetic (e.g., TV or radio) waves * Antennae Galaxies, the name of two collid ...
are parallel and aligned, that is they are located along a common line or axis.


Photography

The
collinearity equation The collinearity equations are a set of two equations, used in photogrammetry and computer stereo vision, to relate coordinates in a sensor plane (in two dimensions) to object coordinates (in three dimensions). The equations originate from the ...
s are a set of two equations, used in
photogrammetry Photogrammetry is the science and technology of obtaining reliable information about physical objects and the environment through the process of recording, measuring and interpreting photographic images and patterns of electromagnetic radiant ima ...
and
computer stereo vision Computer stereo vision is the extraction of 3D information from digital images, such as those obtained by a CCD camera. By comparing information about a scene from two vantage points, 3D information can be extracted by examining the relative positi ...
, to relate
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sig ...
in an image (
sensor A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
) plane (in two dimensions) to object coordinates (in three dimensions). In the photography setting, the equations are derived by considering the
central projection In mathematics, a projection is a mapping of a set (or other mathematical structure) into a subset (or sub-structure), which is equal to its square for mapping composition, i.e., which is idempotent. The restriction to a subspace of a projec ...
of a point of the
object Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ...
through the
optical centre In Gaussian optics, the cardinal points consist of three pairs of points located on the optical axis of a rotationally symmetric, focal, optical system. These are the '' focal points'', the principal points, and the nodal points. For ''ideal'' s ...
of the
camera A camera is an optical instrument that can capture an image. Most cameras can capture 2D images, with some more advanced models being able to capture 3D images. At a basic level, most cameras consist of sealed boxes (the camera body), with ...
to the image in the image (sensor) plane. The three points, object point, image point and optical centre, are always collinear. Another way to say this is that the line segments joining the object points with their image points are all concurrent at the optical centre.It's more mathematically natural to refer to these equations as ''concurrency equations'', but photogrammetry literature does not use that terminology.


See also

*
Pappus's hexagon theorem In mathematics, Pappus's hexagon theorem (attributed to Pappus of Alexandria) states that *given one set of collinear points A, B, C, and another set of collinear points a,b,c, then the intersection points X,Y,Z of line pairs Ab and aB, Ac and ...
*
No-three-in-line problem The no-three-in-line problem in discrete geometry asks how many points can be placed in the n\times n grid so that no three points lie on the same line. The problem concerns lines of all slopes, not only those aligned with the grid. It was intro ...
* Incidence (geometry)#Collinearity *
Coplanarity In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. How ...


Notes


References

* * * {{Citation , last1=Dembowski , first1=Peter , title=Finite geometries , publisher=
Springer-Verlag Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 ...
, location=Berlin, New York , series=
Ergebnisse der Mathematik und ihrer Grenzgebiete ''Ergebnisse der Mathematik und ihrer Grenzgebiete''/''A Series of Modern Surveys in Mathematics'' is a series of scholarly monographs published by Springer Science+Business Media. The title literally means "Results in mathematics and related area ...
, Band 44 , mr=0233275 , year=1968 , isbn=3-540-61786-8 , url-access=registration , url=https://archive.org/details/finitegeometries0000demb Incidence geometry