Cladding (fiber optics)
   HOME

TheInfoList



OR:

Cladding in
optical fiber An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass ( silica) or plastic to a diameter slightly thicker than that of a human hair Hair is a protein filament that grows ...
s is one or more layers of materials of lower
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
, in intimate contact with a core material of higher refractive index. The cladding causes light to be confined to the core of the fiber by total internal reflection at the boundary between the two.The Basics of Fiber Optic Cable
/ref> Light propagation within the cladding is typically suppressed for most fibers. However, some fibers can support ''cladding modes'' in which light propagates through the cladding as well as the core. Depending upon the quantity of modes that are supported, they are referred to as multi-mode fibers and single-mode fibers. Improving transmission through fibers by applying a cladding was discovered in 1953 by Dutch scientist Bram van Heel.


History

The fact that transmission through fibers could be improved by applying a cladding was discovered in 1953 by Dutch scientist Bram van Heel, who used it to demonstrate image transmission through a bundle of optical fibers. Early cladding materials included oils,
waxes Waxes are a diverse class of organic compounds that are lipophilic, malleable solids near ambient temperatures. They include higher alkanes and lipids, typically with melting points above about 40 °C (104 °F), melting to give low ...
, and
polymers A polymer (; Greek '' poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
. Lawrence E. Curtiss at the
University of Michigan , mottoeng = "Arts, Knowledge, Truth" , former_names = Catholepistemiad, or University of Michigania (1817–1821) , budget = $10.3 billion (2021) , endowment = $17 billion (2021)As o ...
developed the first glass cladding in 1956, by inserting a glass rod into a tube of glass with a lower refractive index, fusing the two together, and drawing the composite structure into an optical fiber.


Modes

A cladding mode is a
mode Mode ( la, modus meaning "manner, tune, measure, due measure, rhythm, melody") may refer to: Arts and entertainment * '' MO''D''E (magazine)'', a defunct U.S. women's fashion magazine * ''Mode'' magazine, a fictional fashion magazine which is ...
that is confined to the cladding of an
optical fiber An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass ( silica) or plastic to a diameter slightly thicker than that of a human hair Hair is a protein filament that grows ...
by virtue of the fact that the cladding has a higher
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
than the surrounding
medium Medium may refer to: Science and technology Aviation * Medium bomber, a class of war plane * Tecma Medium, a French hang glider design Communication * Media (communication), tools used to store and deliver information or data * Medium ...
, which is either air or the primary polymer overcoat. These modes are generally undesired. Modern fibers have a primary polymer overcoat with a refractive index that is slightly higher than that of the cladding, so that light propagating in the cladding is rapidly attenuated and disappears after only a few centimeters of
propagation Propagation can refer to: *Chain propagation in a chemical reaction mechanism *Crack propagation, the growth of a crack during the fracture of materials * Propaganda, non-objective information used to further an agenda * Reproduction, and other for ...
. An exception to this is double-clad fiber, which is designed to support a mode in its inner cladding, as well as one in its core.


Advantages

In the production of glass fibers, there will inevitably be surface irregularities (ex. pore and cracks) that will scatter light when struck and lessen the total travel distance of the light. The inclusion of a glass cladding greatly reduces the attenuation caused by these surface irregularities. This is due to the light scattering less at the glass/glass interface than it would have at the glass/air interface for a fiber without cladding. The two primary factors that allow for this are the smaller change in index of refraction seen between two surfaces of glass, as well as surface irregularities on the cladding not interfering with the light beams. The inclusion of glass cladding is also an improvement over just applying a polymer coating, as glass will typically be stronger, more homogenous, and cleaner. Additionally, the inclusion of a cladding layer also allows for the usage of smaller glass fiber cores. With most glass fibers have a cladding that raises the total outer diameter to 125 microns.


Effect on numerical aperture

The numerical aperture of a multimode optical fiber is a function of the indices of refraction of the cladding and the core: : \rm = \sqrt The numerical aperture allows for the calculation of the acceptance angle of incidence at the fiber interface. Which will give the maximum angle at which the incidence light can enter the core and maintain total internal reflection: \rm = \sin(\theta_A) By combining both of these equations it can be seen in the diagram above how \theta_A is a function of n_1 and n_2, where n_1 is the index of refraction of the core and n_2 n_2 is the index of refraction of the cladding.


Recent developments

Fiber optic cores and cladding are typically made from highly purified silica glass due to its excellent transmission of light. Certain impurities can be added to impart various properties, such as increasing transmission distance or improving fiber flexibility. There has been significant work done in improving these properties within the last several years.
ClearCurve ClearCurve is Corning's brand name for a new optical fiber that can be bent around short-radius curves without losing its signal. It is constructed with a conventional fiber on the inside, surrounded by a cladding containing a new nanostructured r ...
is a fiber optic cable created by Corning in which alterations to the cladding allow for a fiber to be made hundreds of times more flexible than traditional fibers.


References

Fiber optics {{Optics-stub