Choquet theory
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, Choquet theory, named after
Gustave Choquet Gustave Choquet (; 1 March 1915 – 14 November 2006) was a French mathematician. Choquet was born in Solesmes, Nord. His contributions include work in functional analysis, potential theory, topology and measure theory. He is known for creat ...
, is an area of
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defi ...
and convex analysis concerned with measures which have
support Support may refer to: Arts, entertainment, and media * Supporting character Business and finance * Support (technical analysis) * Child support * Customer support * Income Support Construction * Support (structure), or lateral support, a ...
on the
extreme points In mathematics, an extreme point of a convex set S in a real or complex vector space is a point in S which does not lie in any open line segment joining two points of S. In linear programming problems, an extreme point is also called vertex ...
of a
convex set In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex ...
''C''. Roughly speaking, every vector of ''C'' should appear as a weighted average of extreme points, a concept made more precise by generalizing the notion of weighted average from a
convex combination In convex geometry and vector algebra, a convex combination is a linear combination of points (which can be vectors, scalars, or more generally points in an affine space) where all coefficients are non-negative and sum to 1. In other w ...
to an
integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
taken over the set ''E'' of extreme points. Here ''C'' is a subset of a real vector space ''V'', and the main thrust of the theory is to treat the cases where ''V'' is an infinite-dimensional (locally convex Hausdorff) topological vector space along lines similar to the finite-dimensional case. The main concerns of Gustave Choquet were in
potential theory In mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gra ...
. Choquet theory has become a general paradigm, particularly for treating
convex cone In linear algebra, a ''cone''—sometimes called a linear cone for distinguishing it from other sorts of cones—is a subset of a vector space that is closed under scalar multiplication; that is, is a cone if x\in C implies sx\in C for every . W ...
s as determined by their extreme rays, and so for many different notions of ''positivity'' in mathematics. The two ends of a
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between i ...
determine the points in between: in vector terms the segment from ''v'' to ''w'' consists of the λ''v'' + (1 − λ)''w'' with 0 ≤ λ ≤ 1. The classical result of
Hermann Minkowski Hermann Minkowski (; ; 22 June 1864 – 12 January 1909) was a German mathematician and professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used geometrical methods to solve problems in number t ...
says that in
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
, a bounded,
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
convex set In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex ...
''C'' is the
convex hull In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space ...
of its extreme point set ''E'', so that any ''c'' in ''C'' is a (finite)
convex combination In convex geometry and vector algebra, a convex combination is a linear combination of points (which can be vectors, scalars, or more generally points in an affine space) where all coefficients are non-negative and sum to 1. In other w ...
of points ''e'' of ''E''. Here ''E'' may be a finite or an infinite set. In vector terms, by assigning non-negative weights ''w''(''e'') to the ''e'' in ''E'',
almost all In mathematics, the term "almost all" means "all but a negligible amount". More precisely, if X is a set, "almost all elements of X" means "all elements of X but those in a negligible subset of X". The meaning of "negligible" depends on the mathema ...
0, we can represent any ''c'' in ''C'' as c = \sum_ w(e) e\ with \sum_ w(e) = 1.\ In any case the ''w''(''e'') give a
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as ''countable additivity''. The difference between a probability measure and the more ge ...
supported on a finite subset of ''E''. For any
affine function In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generall ...
''f'' on ''C'', its value at the point ''c'' is f (c) = \int f(e) d w(e). In the infinite dimensional setting, one would like to make a similar statement.


Choquet's theorem

:Choquet's theorem states that for a
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in Britis ...
convex subset ''C'' of a
normed space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length ...
''V'', given ''c'' in ''C'' there exists a
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as ''countable additivity''. The difference between a probability measure and the more ge ...
''w'' supported on the set ''E'' of extreme points of ''C'' such that, for any affine function ''f'' on ''C,'' f (c) = \int f(e) d w(e). In practice ''V'' will be a
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vector ...
. The original Krein–Milman theorem follows from Choquet's result. Another corollary is the Riesz representation theorem for states on the continuous functions on a metrizable compact Hausdorff space. More generally, for ''V'' a
locally convex topological vector space In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological ...
, the Choquet–Bishop–de Leeuw theorem Errett Bishop; Karl de Leeuw
"The representations of linear functionals by measures on sets of extreme points"
Annales de l'Institut Fourier, 9 (1959), pp. 305–331.
gives the same formal statement. In addition to the existence of a probability measure supported on the extreme boundary that represents a given point ''c'', one might also consider the uniqueness of such measures. It is easy to see that uniqueness does not hold even in the finite dimensional setting. One can take, for counterexamples, the convex set to be a
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only ...
or a ball in R3. Uniqueness does hold, however, when the convex set is a finite dimensional
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
. A finite dimensional simplex is a special case of a Choquet simplex. Any point in a Choquet simplex is represented by a unique probability measure on the extreme points.


See also

* * * * *


Notes


References

* * * * {{Analysis in topological vector spaces Convex hulls Functional analysis Integral representations