Chemisorption
   HOME

TheInfoList



OR:

Chemisorption is a kind of
adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which ...
which involves a chemical reaction between the surface and the adsorbate. New chemical bonds are generated at the adsorbent surface. Examples include macroscopic phenomena that can be very obvious, like
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engi ...
, and subtler effects associated with
heterogeneous catalysis In chemistry, heterogeneous catalysis is catalysis where the phase of catalysts differs from that of the reactants or products. The process contrasts with homogeneous catalysis where the reactants, products and catalyst exist in the same phase. ...
, where the catalyst and reactants are in different phases. The strong interaction between the
adsorbate Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a f ...
and the substrate
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
creates new types of electronic bonds. In contrast with chemisorption is physisorption, which leaves the chemical species of the
adsorbate Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a f ...
and surface intact. It is conventionally accepted that the energetic threshold separating the
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
of "physisorption" from that of "chemisorption" is about 0.5 eV per adsorbed
species In biology, a species is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of the appropriate s ...
. Due to specificity, the nature of chemisorption can greatly differ, depending on the chemical identity and the surface structural properties. The bond between the adsorbate and adsorbent in chemisorption is either ionic or covalent.


Uses

An important example of chemisorption is in
heterogeneous catalysis In chemistry, heterogeneous catalysis is catalysis where the phase of catalysts differs from that of the reactants or products. The process contrasts with homogeneous catalysis where the reactants, products and catalyst exist in the same phase. ...
which involves molecules reacting with each other via the formation of chemisorbed intermediates. After the chemisorbed species combine (by forming bonds with each other) the product desorbs from the surface.


Self-assembled monolayers

Self-assembled monolayer Self-assembled monolayers (SAM) of organic molecules are molecular assemblies formed spontaneously on surfaces by adsorption and are organized into more or less large ordered domains. In some cases molecules that form the monolayer do not interact ...
s (SAMs) are formed by chemisorbing reactive reagents with metal surfaces. A famous example involves
thiol In organic chemistry, a thiol (; ), or thiol derivative, is any organosulfur compound of the form , where R represents an alkyl or other organic substituent. The functional group itself is referred to as either a thiol group or a sulfhydryl gro ...
s (RS-H) adsorbing onto the surface of
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
. This process forms strong Au-SR bonds and releases H2. The densely packed SR groups protect the surface.


Gas-surface chemisorption


Adsorption kinetics

As an instance of adsorption, chemisorption follows the adsorption process. The first stage is for the adsorbate particle to come into contact with the surface. The particle needs to be trapped onto the surface by not possessing enough energy to leave the gas-surface
potential well A potential well is the region surrounding a local minimum of potential energy. Energy captured in a potential well is unable to convert to another type of energy (kinetic energy in the case of a gravitational potential well) because it is cap ...
. If it elastically collides with the surface, then it would return to the bulk gas. If it loses enough momentum through an inelastic collision, then it "sticks" onto the surface, forming a precursor state bonded to the surface by weak forces, similar to physisorption. The particle diffuses on the surface until it finds a deep chemisorption potential well. Then it reacts with the surface or simply desorbs after enough energy and time. The reaction with the surface is dependent on the chemical species involved. Applying the
Gibbs energy In thermodynamics, the Gibbs free energy (or Gibbs energy; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of work that may be performed by a thermodynamically closed system at constant temperature and pre ...
equation for reactions: :\Delta G = \Delta H - T\Delta S General
thermodynamics Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of th ...
states that for spontaneous reactions at constant temperature and pressure, the change in free energy should be negative. Since a free particle is restrained to a surface, and unless the surface atom is highly mobile, entropy is lowered. This means that the
enthalpy Enthalpy , a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant ...
term must be negative, implying an
exothermic reaction In thermochemistry, an exothermic reaction is a "reaction for which the overall standard enthalpy change Δ''H''⚬ is negative." Exothermic reactions usually release heat. The term is often confused with exergonic reaction, which IUPAC defines ...
. Physisorption is given as a Lennard-Jones potential and chemisorption is given as a
Morse potential The Morse potential, named after physicist Philip M. Morse, is a convenient interatomic interaction model for the potential energy of a diatomic molecule. It is a better approximation for the vibrational structure of the molecule than the qua ...
. There exists a point of crossover between the physisorption and chemisorption, meaning a point of transfer. It can occur above or below the zero-energy line (with a difference in the Morse potential, a), representing an
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules p ...
requirement or lack of. Most simple gases on clean metal surfaces lack the activation energy requirement.


Modeling

For experimental setups of chemisorption, the amount of adsorption of a particular system is quantified by a sticking probability value. However, chemisorption is very difficult to theorize. A multidimensional
potential energy surface A potential energy surface (PES) describes the energy of a system, especially a collection of atoms, in terms of certain parameters, normally the positions of the atoms. The surface might define the energy as a function of one or more coordinat ...
(PES) derived from effective medium theory is used to describe the effect of the surface on absorption, but only certain parts of it are used depending on what is to be studied. A simple example of a PES, which takes the total of the energy as a function of location: :E(\) = E_(\) + V_(\) where E_ is the
energy eigenvalue A stationary state is a quantum state with all observables independent of time. It is an eigenvector of the energy operator (instead of a quantum superposition of different energies). It is also called energy eigenvector, energy eigenstate, ener ...
of the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of th ...
for the electronic degrees of freedom and V_ is the ion interactions. This expression is without translational energy,
rotational energy Rotational energy or angular kinetic energy is kinetic energy due to the rotation of an object and is part of its total kinetic energy. Looking at rotational energy separately around an object's axis of rotation, the following dependence on the ob ...
, vibrational excitations, and other such considerations. There exist several models to describe surface reactions: the Langmuir–Hinshelwood mechanism in which both reacting species are adsorbed, and the Eley–Rideal mechanism in which one is adsorbed and the other reacts with it. Real systems have many irregularities, making theoretical calculations more difficult: * Solid surfaces are not necessarily at equilibrium. * They may be perturbed and irregular, defects and such. * Distribution of adsorption energies and odd adsorption sites. * Bonds formed between the adsorbates. Compared to physisorption where adsorbates are simply sitting on the surface, the adsorbates can change the surface, along with its structure. The structure can go through relaxation, where the first few layers change interplanar distances without changing the surface structure, or reconstruction where the surface structure is changed. A direct transition from physisorption to chemisorption has been observed by attaching a CO molecule to the tip of an atomic force microscope and measuring its interaction with a single iron atom. For example, oxygen can form very strong bonds (~4 eV) with metals, such as Cu(110). This comes with the breaking apart of surface bonds in forming surface-adsorbate bonds. A large restructuring occurs by missing row.


Dissociative chemisorption

A particular brand of gas-surface chemisorption is the dissociation of diatomic gas molecules, such as
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
,
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
, and
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
. One model used to describe the process is precursor-mediation. The absorbed molecule is adsorbed onto a surface into a precursor state. The molecule then diffuses across the surface to the chemisorption sites. They break the molecular bond in favor of new bonds to the surface. The energy to overcome the activation potential of dissociation usually comes from translational energy and vibrational energy. An example is the hydrogen and
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
system, one that has been studied many times over. It has a large activation energy of 0.35 – 0.85 eV. The vibrational excitation of the hydrogen molecule promotes dissociation on low index surfaces of copper.


See also

*
Adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which ...
* Physisorption


References


Bibliography

* *{{cite journal , first1=L. , last1=Schlapbach , last2=Züttel , first2=A., title=Hydrogen-storage materials for mobile applications , journal=Nature , date=15 November 2001 , volume=414 , issue=6861 , pages=353–8 , doi=10.1038/35104634 , pmid=11713542 , s2cid=3025203 , url=http://doc.rero.ch/record/6025/files/zuttel_hsm.pdf Physical chemistry Catalysis