Diplodactylidae stubs
   HOME

TheInfoList



OR:

The Diplodactylidae are a
family Family (from la, familia) is a group of people related either by consanguinity (by recognized birth) or affinity (by marriage or other relationship). The purpose of the family is to maintain the well-being of its members and of society. Idea ...
in the suborder
Gekkota Geckos are small, mostly carnivorous lizards that have a wide distribution, found on every continent except Antarctica. Belonging to the infraorder Gekkota, geckos are found in warm climates throughout the world. They range from . Geckos ar ...
(geckos), with over 150
species In biology, a species is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of the appropriate s ...
in 25 genera. These geckos occur in Australia,
New Zealand New Zealand ( mi, Aotearoa ) is an island country in the southwestern Pacific Ocean. It consists of two main landmasses—the North Island () and the South Island ()—and over 700 smaller islands. It is the sixth-largest island count ...
, and New Caledonia. Diplodactylids are the most ecologically diverse and widespread family of geckos in both Australia and New Caledonia, and are the only family of geckos found in New Zealand. Three diplodactylid genera (''
Oedura ''Oedura'' is a genus of medium to large geckos, lizards in the family Diplodactylidae. The genus is endemic to Australia. Species in the genus are referred to by the common name velvet geckos. Geographic range Most of the species of ''Oedur ...
'', ''
Rhacodactylus ''Rhacodactylus'' is a genus of medium to large geckos of the family Diplodactylidae. All species in this genus are found on the islands that make up New Caledonia. Genus characteristics include long limbs and toes with well-developed lamellae ...
'', and '' Hoplodactylus'') have recently been split into multiple new genera. In previous classifications, the family Diplodactylidae is equivalent to the subfamily Diplodactylinae.


Habitat

Like other geckos, Diplodactylidae often live in warm areas that are around the temperature of . They mostly live in rain forests, up in the trees for protection. However, they are also found in cooler climates such as those found in southern New Zealand, where they have been found to be active in temperatures ranging from 1.4 to 31.9C.


Reproduction

Viviparity Among animals, viviparity is development of the embryo inside the body of the parent. This is opposed to oviparity which is a reproductive mode in which females lay developing eggs that complete their development and hatch externally from the ...
is notable as a trait unique to diplodactylids within Gekkota, with two species in New Caledonia from the genus ''Rhacodactylus'' and all species in New Zealand exhibiting this form of reproduction.


Common traits


Adhesion ability

All species possess some form of toepad, except '' Lucasium damaeum'' which shows strong evidence of toepads being secondarily lost. With the help of their adhesion ability they have on their feet, they are able to grip on to surfaces, making it easier for them to travel from one place to another. Based on a study, geckos like to grip onto coarse sandpaper-like surfaces because this material is similar to the type of surfaces they grip on to in their natural habitats. It was concluded that Diplodactylidae like to grip on to rough surfaces.


Classification

While diplodactylid geckos have been relatively well-studied, the family's placement and composition has experienced several revisions, with the systematics continuing to evolve. Recent molecular work has helped to clarify phylogeny that was historically based primarily on morphological traits, justifying the monophyly of Diplodactylidae, revising intergeneric relationships between several genera, and uncovering significant cryptic diversity within the family. However, the current understanding of the systematics and evolution of diplodactylid geckos remains limited, with certain genera and taxa still largely unstudied and significant underestimates in diversity at the species level left to resolve.


Placement within Gekkota

Underwood completed the first comprehensive systematics analysis of geckos in 1954, using morphological features like pupil shape and inferences around biogeography to establish three major families within Gekkota (or Gekkonoidea as it was also known): the
Eublepharidae The Eublepharidae are a family of geckos (Gekkota) consisting of 43 described species in six genera. They occur in Asia, Africa and North America North America is a continent in the Northern Hemisphere and almost entirely within th ...
, the
Sphaerodactylidae The Sphaerodactylidae are a family of geckos (Gekkota) distributed in North America, Central America, South America, and the Caribbean, as well as in Southern Europe, North Africa, the Middle East, and into Central Asia. The family contains 12 li ...
, and the
Gekkonidae Gekkonidae (the common geckos) is the largest family of geckos, containing over 950 described species in 64 genera. Members of the Gekkonidae comprise many of the most widespread gecko species, including house geckos ('' Hemidactylus''), tokay g ...
. He designated Gekkoninae and
Diplodactylinae The Diplodactylidae are a family in the suborder Gekkota (geckos), with over 150 species in 25 genera. These geckos occur in Australia, New Zealand, and New Caledonia. Diplodactylids are the most ecologically diverse and widespread family of ...
as subfamilies within Gekkonidae. Underwood's Diplodactylinae comprised 22 genera from Australian regions and South Africa, including many of the diplodactylid and carphodactylid species known at the time. Kluge disputed Underwood's classification, instead recognizing a single family, Gekkonidae (later equivalent to Gekkota) with four subfamilies that included the Eublepharinae, Sphaerodactylinae, Gekkoninae and Diplodactylinae. He subdivided Diplodactylinae into two tribes, Diplodactylini with four genera, and Carphodactylini with nine. As Kluge believed pupil shape alone to be too variable a diagnostic character, his classification was based on 18 morphological characters, as well as geologic and geographical origins. This necessitated the reallocation of several Diplodactylinae genera (e.g., those from South Africa, those with “non-parchment-like” shelled eggs) to the Gekkoninae. In subsequent years, Kluge's classifications of genera, which built off Underwood's original groupings, were generally accepted. However, Kluge's subfamilial allocations—including his subdivision of Diplodactylinae—and his apparent assumptions around their respective monophyly proved problematic for some (e.g., Moffatt 1973, Hecht 1976), who suggested alternative or expanded hypotheses. Kluge's 1987 publication continued to build on his earlier work by examining the relationship of the limbless
Pygopodidae Pygopodidae, commonly known as legless lizards, snake-lizards, or flap-footed lizards, is a family of squamates with reduced or absent limbs, and are a type of gecko. At least 35 species are placed in two subfamilies and eight genera. They hav ...
to the Gekkonidae. He used a simple phylogenetic analysis of synapomorphies to place the pygopods within Gekkonidae as sisters to the Diplodactylinae, and delineated this clade as
Pygopodoidea Pygopodoidea is a gecko superfamily and the only taxon in the gekkotan subclade Pygopodomorpha. The clade includes three Australasian families: Diplodactylidae (stone geckos), Carphodactylidae (knob-tailed geckos), and Pygopodidae (flap-footed ge ...
. This grouping also made more sense biogeographically, as Kluge modified his earlier assumptions of gekkotan origins from fixed continents, landbridges, and oceanic dispersal, to lie more in line with the emerging plate-tectonics Gondwanan hypothesis. While these revisions helped advance systematics closer to the contemporary understanding of Diplodactylidae, inconsistencies around how Carphodactylini were then defined and how they fit within the Australia-New Zealand vicariance left questions that required more sophisticated genetic analyses to answer. Many early assumptions of diplodactylid systematics have either been supported or invalidated with the improvement of phylogenetic analyses and more comprehensive sampling. Nuclear loci in particular have been helpful for resolving intergeneric relationships and origin questions. ''C-mos'' loci and 12S rRNA gene sequences to construct a molecular phylogeny helped to confirm the pygopods’ placement as a monophyletic sister lineage to the Diplodactylinae. These results also corroborated that both the Diplodactylinae and its Diplodactylini subdivision were monophyletic, although monophyly of the Carphodactylini was not supported. In the first gecko-wide genetic analysis by Han et al. (2004), ''c-mos'' loci again helped clarify placement within the Pygopodoidea. Results showed evidence of paraphyly for Kluge's Diplodactylinae with Diplodactylini genera and padded carphodactylines instead supported as the sister group to pygopods ''and'' padless carphodactylines, which was upheld in later analyses. These new pairings led Han et al. (2004) to reorder membership within the Diplodactylini and Carphodactylini and to propose a new taxonomy of geckos at the family level to reflect their findings. The five new families proposed were the limbless Pygopodidae; Carphodactylidae, which included only padless Carphodactylini; Diplodactylidae, which now included all Kluge's Diplodactylini together with all pad-bearing Carphodactylini; Eublepharidae; and Gekkonidae. This was a significant revision to Kluge's proposed order, and, excepting minor movement of genera and more extensive movement at the species level, is generally representative of the modern monophyletic Diplodactylidae.


Genera


Intergeneric systematics

The Australian endemic diplodactylids excepting ''
Pseudothecadactylus ''Pseudothecadactylus'' is a genus of geckos found in various states of Australia. Species Three species are recognized as being valid. *'' Pseudothecadactylus australis'' – Cape York pad-tail gecko *'' Pseudothecadactylus cavaticus'' *'' ...
'', the New Caledonia diplodactylids together with the Australian ''Pseudothecadactylus'', and the New Zealand endemics comprise the three well-supported clades within current-day Diplodactylidae. Due to their closer divergence, the New Zealand and Australian endemics (without ''Pseudothecadactylus)'' form a sister clade, while the New Caledonian diplodactylids show evidence of their more recent and rapid radiation in short branch lengths. Because the quick succession of genera can complicate phylogenetic reconstruction, it may remain difficult to produce well-supported intergeneric relationships for the eight New Caledonian diplodactylids in spite of a growing number of studies investigating them. New Zealand genera have proved somewhat easier to analyze. The group has correspondingly gone through several taxonomic revisions to reach the current order of genera proposed by Nielson et al. in 2011. Yet, a high amount of cryptic diversity remains unresolved, especially within '' Hoplodactylus''. Australia genera such as ''
Diplodactylus ''Diplodactylus'' is a genus of geckos of the family Diplodactylidae from Australia. They are sometimes called stone geckos or fat-tailed geckos. Member species are morphologically similar but genetically distinct. Species The following 27 specie ...
, Lucasium, Rhynchoedura'' and ''
Strophurus ''Strophurus'' is a genus of lizards in the Family (biology), family Diplodactylidae. All species of ''Strophurus'' are endemic to Australia, and are sometimes given the common names phasmid geckos, spiny-tailed geckos, and striped geckos. Des ...
'' are generally considered well-studied, with many of their intergeneric relationships strongly supported and resolved. The ''Pseudothecadactylus'' affinity to New Caledonian geckos has been informative and is under study, while ''
Oedura ''Oedura'' is a genus of medium to large geckos, lizards in the family Diplodactylidae. The genus is endemic to Australia. Species in the genus are referred to by the common name velvet geckos. Geographic range Most of the species of ''Oedur ...
'' are being increasingly examined. However, more work is still needed to understand the basal relationships and divergence of other “non-core” genera like '' Nebulifera,
Amalosia ''Amalosia'' is a genus of lizards in the family Diplodactylidae. The genus is endemic to Australia. It includes four species: Taxonomy All species of the genus ''Amalosia'' were previously included within the genus ''Oedura'' until 2012, wh ...
,'' ''Hespeodura'' and '' Crenadactylus.'' Multiple studies in all three endemic clades of the Diplodactylidae have suggested and confirmed that high cryptic diversity exists at the species level. Because undescribed diversity can have serious implications for not only evolutionary and ecological understanding, but also for effective conservation of the family, this is an issue to be resolved within the Diplodactylidae phylogeny. Endemic Gondwanan lineages, a diversity of habitats, and the relative isolation of the three Australian regions have allowed for a significant speciation of diplodactylids. In 2009 an additional 16 ''Diplodactylus'' species within the Australian radiation were described, while evidence of deep divergence within ''Crenadactylus'' revised the single nominal species '' Crenadactylus ocellatus'' into 10 distinct lineages in 2010. Likewise 16 new species in New Zealand were recognized in 2011. In 2014 another seven genetically distinct and morphologically diagnosable taxa were described in Australia, and two years later four additional species were added to ''Oedura''. In 2020 four new species were reported in New Caledonia. Just within the past decade, diversity records within Diplodactylidae have increased substantially, from 54 species to almost 140 species. This is due in large part to improvement in taxon sampling and molecular analyses, as well as the growing recognition of the cryptic diversity that still exists within the family. The following cladogram represents the structure of Diplodactylidae in a
phylogenetic analysis In biology, phylogenetics (; from Greek φυλή/ φῦλον [] "tribe, clan, race", and wikt:γενετικός, γενετικός [] "origin, source, birth") is the study of the evolutionary history and relationships among or within groups o ...
by Skipwith et al., 2019.


Origins

Although origins of the Diplodactylidae have long been debated, the Gondwanan vicariance hypothesis has generally supplanted most arguments for dispersal across land-bridges or by sea. The first gecko-wide genetic analysis found support for a split of Eastern Gondwanaland from Western Gondwanaland and evidence that Eastern Gondwanan lineages of Diplodactylidae, Pygopodidae and Carphodactylidae appear older than lineages in the Gekkonidae. These findings have been upheld and clarified in subsequent dating analyses. Most molecular divergence studies agree that diplodactylids were likely present prior to the final breakup of Australia and Antarctica with diversification of crown diplodactyloids occurring between the late Cretaceous or the earliest Paleogene periods. A recent phylogenomic analysis suggests independent colonization events to New Zealand and New Caledonia after the K-T extinction in the late Paleogene and early Neogene, respectively. Due to the range of these dispersals, and fossil evidence showing that New Zealand was likely submerged during the Oligocene as was New Caledonia during the
Paleocene The Paleocene, ( ) or Palaeocene, is a geological epoch that lasted from about 66 to 56 million years ago (mya). It is the first epoch of the Paleogene Period in the modern Cenozoic Era. The name is a combination of the Ancient Greek ''pal ...
, it has been suggested that both the New Zealand and New Caledonian colonizations may have been a result of over-water dispersal events after all.


Conservation

Of the approximately 149 species currently described, 30 are listed as Critically Endangered or
Endangered An endangered species is a species that is very likely to become extinct in the near future, either worldwide or in a particular political jurisdiction. Endangered species may be at risk due to factors such as habitat loss, poaching and in ...
, and 28 as
Near Threatened A near-threatened species is a species which has been categorized as "Near Threatened" (NT) by the International Union for Conservation of Nature as that may be vulnerable to endangerment in the near future, but it does not currently qualify f ...
or Vulnerable. Another three are listed as data deficient s of October 2021


References


Further reading

* Underwood G. 1954. On the classification and evolution of geckos. ''Proc. Zool. Soc. London'' 124 (3): 469–492. (Diplodactylidae, new family). {{Taxonbar, from=Q145927 Lizard families Taxa named by Garth Underwood Extant Paleocene first appearances