Carbon-neutral fuel
   HOME

TheInfoList



OR:

Carbon-neutral fuel is fuel which produces no net-
greenhouse gas emissions Greenhouse gas emissions from human activities strengthen the greenhouse effect, contributing to climate change. Most is carbon dioxide from burning fossil fuels: coal, oil, and natural gas. The largest emitters include coal in China and ...
or carbon footprint. In practice, this usually means fuels that are made using carbon dioxide (CO2) as a feedstock. Proposed carbon-neutral fuels can broadly be grouped into
synthetic fuel Synthetic fuel or synfuel is a liquid fuel, or sometimes gaseous fuel, obtained from syngas, a mixture of carbon monoxide and hydrogen, in which the syngas was derived from gasification of solid feedstocks such as coal or biomass or by refo ...
s, which are made by chemically hydrogenating carbon dioxide, and biofuels, which are produced using natural CO2-consuming processes like
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored i ...
. The carbon dioxide used to make synthetic fuels may be directly captured from the air, recycled from power plant flue
exhaust gas Exhaust gas or flue gas is emitted as a result of the combustion of fuels such as natural gas, gasoline (petrol), diesel fuel, fuel oil, biodiesel blends, or coal. According to the type of engine, it is discharged into the atmosphere through an ...
or derived from carbonic acid in
seawater Seawater, or salt water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5% (35 g/L, 35 ppt, 600 mM). This means that every kilogram (roughly one liter by volume) of seawater has appr ...
. Common examples of synthetic fuels include
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous wa ...
and
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Ea ...
, although more complex
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ...
s such as
gasoline Gasoline (; ) or petrol (; ) (see ) is a transparent, petroleum-derived flammable liquid that is used primarily as a fuel in most spark-ignited internal combustion engines (also known as petrol engines). It consists mostly of organi ...
and jet fuel have also been successfully synthesized artificially. In addition to being carbon neutral, such
renewable fuels Renewable Fuels are fuels produced from renewable resources. Examples include: biofuels (e.g. Vegetable oil used as fuel, ethanol, methanol from clean energy and carbon dioxide or biomass, and biodiesel) and Hydrogen fuel (when produced with ren ...
can alleviate the costs and dependency issues of imported fossil fuels without requiring either electrification of the vehicle fleet or conversion to hydrogen or other fuels, enabling continued compatible and affordable vehicles. In order to be truly carbon-neutral, any energy required for the process must be itself be carbon-neutral or emissions-free, like renewable energy or nuclear energy. (Review.) (Review.) (Review.) If the
combustion Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combus ...
of carbon-neutral fuels is subject to
carbon capture Carbon capture may refer to: * Carbon capture and utilization, where the captured carbon dioxide is used * Carbon sequestration, where the captured carbon dioxide is stored ** Carbon capture and storage, referring to carbon sequestration from point ...
at the flue, they result in net- negative carbon dioxide emission and may thus constitute a form of
greenhouse gas remediation Carbon dioxide removal (CDR), also known as negative emissions, is a process in which carbon dioxide gas () is removed from the atmosphere and sequestered for long periods of time. Similarly, greenhouse gas removal (GGR) or negative greenho ...
. Negative emissions are widely considered an indispensable component of efforts to limit global warming, although negative emissions technologies are currently not economically viable for private sector companies. Carbon credits are likely to play an important role for carbon-negative fuels.


Production of synthetic hydrocarbons

Synthetic hydrocarbons can be produced in chemical reactions between carbon dioxide, which can be captured from power plants or the air, and
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
. The fuel, often referred to as
electrofuel Electrofuels, also known as e-fuels or synthetic fuels, are a type of drop-in replacement fuel. They are manufactured using captured carbon dioxide or carbon monoxide, together with hydrogen obtained from sustainable electricity sources such as ...
, stores the energy that was used in the production of the hydrogen. Hydrogen fuel is typically prepared by the
electrolysis of water Electrolysis of water, also known as electrochemical water splitting, is the process of using electricity to decompose water into oxygen and hydrogen gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, or remi ...
in a
power to gas Power-to-gas (often abbreviated P2G) is a technology that uses electric power to produce a gaseous fuel. When using surplus power from wind generation, the concept is sometimes called windgas. Most P2G systems use electrolysis to produce hydrogen ...
process. To minimize emissions, the electricity is produced using a low-emission energy source such as
wind Wind is the natural movement of air or other gases relative to a planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heating of land surfaces and lasting a few ho ...
, solar, or nuclear power. Through the
Sabatier reaction The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 MPa ) in the presence of a nickel catalyst. It w ...
methane can then be produced which may then be stored to be burned later in
power plants A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid. Many pow ...
(as a synthetic
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbo ...
), transported by pipeline, truck, or tanker ship, or be used in
gas to liquids Gas to liquids (GTL) is a refinery process to convert natural gas or other gaseous hydrocarbons into longer-chain hydrocarbons, such as gasoline or diesel fuel. Methane-rich gases are converted into liquid synthetic fuels. Two general strategies ...
processes such as the
Fischer–Tropsch process The Fischer–Tropsch process is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen, known as syngas, into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatu ...
to make traditional fuels for transportation or heating. (Review.) There are a few more fuels that can be created using hydrogen. Formic acid for example can be made by reacting the hydrogen with . Formic acid combined with can form
isobutanol Isobutanol (IUPAC nomenclature: 2-methylpropan-1-ol) is an organic compound with the formula (CH3)2CHCH2OH (sometimes represented as ''i''-BuOH). This colorless, flammable liquid with a characteristic smell is mainly used as a solvent either dire ...
. Methanol can be made from a chemical reaction of a carbon-dioxide molecule with three hydrogen molecules to produce methanol and water. The stored energy can be recovered by burning the methanol in a combustion engine, releasing carbon dioxide, water, and heat.
Methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Ea ...
can be produced in a similar reaction. Special precautions against methane leaks are important since methane is nearly 100 times as potent as CO2, regarding the 20-year
global warming potential Global warming potential (GWP) is the heat absorbed by any greenhouse gas in the atmosphere, as a multiple of the heat that would be absorbed by the same mass of carbon dioxide (). GWP is 1 for . For other gases it depends on the gas and the time ...
. More energy can be used to combine methanol or methane into larger hydrocarbon fuel molecules. Researchers have also suggested using methanol to produce dimethyl ether. This fuel could be used as a substitute for diesel fuel due to its ability to self ignite under high pressure and temperature. It is already being used in some areas for heating and energy generation. It is nontoxic, but must be stored under pressure. Larger hydrocarbons and
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an alcohol with the chemical formula . Its formula can be also written as or (an ethyl group linked to a ...
can also be produced from carbon dioxide and hydrogen. All synthetic hydrocarbons are generally produced at temperatures of 200–300 °C, and at pressures of 20 to 50 bar.
Catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
s are usually used to improve the efficiency of the reaction and create the desired type of hydrocarbon fuel. Such reactions are exothermic and use about 3 mol of hydrogen per mole of carbon dioxide involved. They also produce large amounts of water as a byproduct.


Sources of carbon for recycling

The most economical source of carbon for recycling into fuel is flue-gas emissions from fossil-fuel combustion where it can be obtained for about US$7.50 per ton. However, this is not carbon-neutral, since the carbon is of fossil origin, therefore moving carbon from the geosphere to the atmosphere. Since carbonic acid in seawater is in
chemical equilibrium In a chemical reaction, chemical equilibrium is the state in which both the Reagent, reactants and Product (chemistry), products are present in concentrations which have no further tendency to change with time, so that there is no observable chan ...
with atmospheric carbon dioxide, extraction of carbon from seawater has been studied. Researchers have estimated that carbon extraction from seawater would cost about $50 per ton. Carbon capture from ambient air is more costly, at between $94 and $232 per ton and is considered impractical for fuel synthesis or carbon sequestration. Direct air capture is less developed than other methods. Proposals for this method involve using a caustic chemical to react with carbon dioxide in the air to produce
carbonate A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate ...
s. These can then be broken down and hydrated to release pure CO2 gas and regenerate the caustic chemical. This process requires more energy than other methods because carbon dioxide is at much lower concentrations in the atmosphere than in other sources. Researchers have also suggested using biomass as a carbon source for fuel production. Adding hydrogen to the biomass would reduce its carbon to produce fuel. This method has the advantage of using plant matter to cheaply capture carbon dioxide. The plants also add some chemical energy to the fuel from biological molecules. This may be a more efficient use of biomass than conventional biofuel because it uses most of the carbon and chemical energy from the biomass instead of releasing as much energy and carbon. Its main disadvantage is, as with conventional ethanol production, it competes with food production.


Renewable and nuclear energy costs

Nighttime
wind power Wind power or wind energy is mostly the use of wind turbines to generate electricity. Wind power is a popular, sustainable, renewable energy source that has a much smaller impact on the environment than burning fossil fuels. Historically ...
is considered the most economical form of electrical power with which to synthesize fuel, because the
load curve In electrical engineering, a load profile is a graph of the variation in the electrical load versus time. A load profile will vary according to customer type (typical examples include residential, commercial and industrial), temperature and hol ...
for electricity peaks sharply during the warmest hours of the day, but wind tends to blow slightly more at night than during the day. Therefore, the price of nighttime wind power is often much less expensive than any alternative. Off-peak wind power prices in high wind penetration areas of the U.S. averaged 1.64 cents per kilowatt-hour in 2009, but only 0.71 cents/kWh during the least expensive six hours of the day. Typically,
wholesale Wholesaling or distributing is the sale of goods or merchandise to retailers; to industrial, commercial, institutional or other professional business users; or to other wholesalers (wholesale businesses) and related subordinated services. In ...
electricity costs 2 to 5 cents/kWh during the day. Commercial fuel synthesis companies suggest they can produce gasoline for less than
petroleum Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name ''petroleum'' covers both naturally occurring unprocessed crud ...
fuels when oil costs more than $55 per barrel. In 2010, a team of process chemists led by Heather Willauer of the U.S. Navy, estimates that 100 megawatts of electricity can produce of jet fuel per day and shipboard production from nuclear power would cost about . While that was about twice the petroleum fuel cost in 2010, it is expected to be much less than the market price in less than five years if recent trends continue. Moreover, since the delivery of fuel to a
carrier battle group A carrier battle group (CVBG) is a naval fleet consisting of an aircraft carrier capital ship and its large number of escorts, together defining the group. The ''CV'' in ''CVBG'' is the United States Navy hull classification code for an ai ...
costs about , shipboard production is already much less expensive. Willauer said seawater is the "best option" for a source of synthetic jet fuel. By April 2014, Willauer's team had not yet made fuel to the standard required by military jets, but they were able in September 2013 to use the fuel to fly a radio-controlled model airplane powered by a common two-stroke internal combustion engine. Because the process requires a large input of electrical energy, a plausible first step of implementation would be for American nuclear-powered aircraft carriers (the Nimitz-class and the Gerald R. Ford-class) to manufacture their own jet fuel. The U.S. Navy is expected to deploy the technology some time in the 2020s.


Demonstration projects and commercial development

A 250 kilowatt methane synthesis plant was constructed by the Center for Solar Energy and Hydrogen Research (ZSW) at
Baden-Württemberg Baden-Württemberg (; ), commonly shortened to BW or BaWü, is a German state () in Southwest Germany, east of the Rhine, which forms the southern part of Germany's western border with France. With more than 11.07 million inhabitants across a ...
and the
Fraunhofer Society The Fraunhofer Society (german: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., lit=Fraunhofer Society for the Advancement of Applied Research) is a German research organization with 76institutes spread throughout Germany ...
in Germany and began operating in 2010. It is being upgraded to 10 megawatts, scheduled for completion in autumn 2012. The George Olah carbon dioxide recycling plant operated by
Carbon Recycling International Carbon Recycling International (CRI) is an Icelandic limited liability company which has developed a technology designed to produce renewable methanol from carbon dioxide and hydrogen, using water electrolysis or, alternatively, hydrogen captured ...
in Grindavík, Iceland, has been producing 2 million liters of methanol transportation fuel per year from flue exhaust of the
Svartsengi Power Station The Svartsengi Power Station (''Svartsengi'' (); "black meadow" in Icelandic) is a geothermal power plant, which is located in the Svartsengi geothermal field, about four km north of Grindavík, approximately 20 km SE of Keflavík Internat ...
since 2011. It has the capacity to produce 5 million liters per year.
Audi Audi AG () is a German automotive manufacturer of luxury vehicles headquartered in Ingolstadt, Bavaria, Germany. As a subsidiary of its parent company, the Volkswagen Group, Audi produces vehicles in nine production facilities worldwide. Th ...
has constructed a carbon-neutral
liquefied natural gas Liquefied natural gas (LNG) is natural gas (predominantly methane, CH4, with some mixture of ethane, C2H6) that has been cooled down to liquid form for ease and safety of non-pressurized storage or transport. It takes up about 1/600th the vol ...
(LNG) plant in Werlte, Germany. The plant is intended to produce transportation fuel to offset LNG used in their A3 Sportback g-tron automobiles, and can keep 2,800 metric tons of CO2 out of the environment per year at its initial capacity. Tesla has implemented a
zero emissions vehicle A zero-emission vehicle, or ZEV, is a vehicle that does not emit exhaust gas or other pollutants from the onboard source of power. The California definition also adds that this includes under any and all possible operational modes and conditions ...
in which it channels solar energy into battery packs. The Tesla battery packs are then used to charge their vehicles. In 2020, Tesla reused about 92% of raw metals in making their battery packs. Commercial developments are taking place in
Columbia, South Carolina Columbia is the List of capitals in the United States, capital of the U.S. state of South Carolina. With a population of 136,632 at the 2020 United States census, 2020 census, it is List of municipalities in South Carolina, the second-largest ...
, Camarillo, California, and Darlington, England. A demonstration project in
Berkeley, California Berkeley ( ) is a city on the eastern shore of San Francisco Bay in northern Alameda County, California, United States. It is named after the 18th-century Irish bishop and philosopher George Berkeley. It borders the cities of Oakland and E ...
, proposes synthesizing both fuels and food oils from recovered flue gases.


Greenhouse gas remediation

Carbon-neutral fuels can lead to greenhouse gas remediation because carbon dioxide gas would be reused to produce fuel instead of being released into the atmosphere. Capturing the carbon dioxide in flue gas emissions from power plants would eliminate their greenhouse gas emissions, although burning the fuel in vehicles would release that carbon because there is no economical way to capture those emissions. This approach would reduce net carbon dioxide emission by about 50% if it were used on all fossil fuel power plants. Most
coal Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other elements, chiefly hydrogen, sulfur, oxygen, and nitrogen. Coal is formed when ...
and natural gas power plants have been predicted to be economically retrofittable with
carbon dioxide scrubber A carbon dioxide scrubber is a piece of equipment that absorbs carbon dioxide (CO2). It is used to treat exhaust gases from industrial plants or from exhaled air in life support systems such as rebreathers or in spacecraft, submersible craft or ...
s for carbon capture to recycle flue exhaust or for
carbon sequestration Carbon sequestration is the process of storing carbon in a carbon pool. Carbon dioxide () is naturally captured from the atmosphere through biological, chemical, and physical processes. These changes can be accelerated through changes in lan ...
. (Review.) Such recycling is expected to not only cost less than the excess economic impacts of climate change if it were not done, but also to pay for itself as global fuel
demand In economics, demand is the quantity of a good that consumers are willing and able to purchase at various prices during a given time. The relationship between price and quantity demand is also called the demand curve. Demand for a specific item ...
growth and
peak oil Peak oil is the hypothetical point in time when the maximum rate of global oil production is reached, after which it is argued that production will begin an irreversible decline. It is related to the distinct concept of oil depletion; whil ...
shortages increase the price of
petroleum Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name ''petroleum'' covers both naturally occurring unprocessed crud ...
and
fungible In economics, fungibility is the property of a good or a commodity whose individual units are essentially interchangeable, and each of whose parts is indistinguishable from any other part. Fungible tokens can be exchanged or replaced; for exam ...
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbo ...
. (Review.) Capturing CO2 directly from the air, known as
direct air capture Direct air capture (DAC) is a process of capturing carbon dioxide () directly from the ambient air (as opposed to capturing from point sources, such as a cement factory or biomass power plant) and generating a concentrated stream of for seque ...
, or extracting carbonic acid from seawater would also reduce the amount of carbon dioxide in the environment, and create a closed cycle of carbon to eliminate new carbon dioxide emissions. Use of these methods would eliminate the need for fossil fuels entirely, assuming that enough renewable energy could be generated to produce the fuel. Using synthetic hydrocarbons to produce synthetic materials such as plastics could result in permanent sequestration of carbon from the atmosphere.


Technologies


Traditional fuels, methanol or ethanol

Some authorities have recommended producing methanol instead of traditional transportation fuels. It is a liquid at normal temperatures and can be toxic if ingested. Methanol has a higher octane rating than gasoline but a lower energy density, and can be mixed with other fuels or used on its own. It may also be used in the production of more complex hydrocarbons and polymers. Direct methanol fuel cells have been developed by Caltech's
Jet Propulsion Laboratory The Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center in the City of La Cañada Flintridge, California, United States. Founded in the 1930s by Caltech researchers, JPL is owned by NASA an ...
to convert methanol and oxygen into electricity. It is possible to convert methanol into gasoline, jet fuel or other hydrocarbons, but that requires additional energy and more complex production facilities. Methanol is slightly more corrosive than traditional fuels, requiring automobile modifications on the order of US$100 each to use it. In 2016, a method using carbon spikes, copper nanoparticles and nitrogen that converts carbon dioxide to
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an alcohol with the chemical formula . Its formula can be also written as or (an ethyl group linked to a ...
was developed.


Microalgae

Fuel made from microalgae could potentially have a low carbon footprint and is an active area of research, although no large-scale production system has been commercialized to date. Microalgae are aquatic
unicellular organism A unicellular organism, also known as a single-celled organism, is an organism that consists of a single cell, unlike a multicellular organism that consists of multiple cells. Organisms fall into two general categories: prokaryotic organisms a ...
s. Although they, unlike most plants, have extremely simple cell structures, they are still
photoautotrophic Photoautotrophs are organisms that use light energy and inorganic carbon to produce organic materials. Eukaryotic photoautotrophs absorb energy through the chlorophyll molecules in their chloroplasts while prokaryotic photoautotrophs use chlorophyll ...
, able to use solar energy to convert
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
into
carbohydrate In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may or m ...
s and fats via
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored i ...
. These compounds can serve as raw materials for biofuels like
bioethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an alcohol with the chemical formula . Its formula can be also written as or (an ethyl group linked to a hyd ...
or
biodiesel Biodiesel is a form of diesel fuel derived from plants or animals and consisting of long-chain fatty acid esters. It is typically made by chemically reacting lipids such as animal fat ( tallow), soybean oil, or some other vegetable oil ...
. Therefore, even though combusting microalgae-based fuel for energy would still produce emissions like any other fuel, it could be close to carbon-neutral if they, as a whole, consumed as much carbon dioxide as is emitted during combustion. The advantages of microalgae are their higher CO2-fixation efficiency compared to most plants and their ability to thrive in a wide variety of aquatic habitats. Their main disadvantage is their high cost. It has been argued that their unique and highly variable chemical compositions may make it attractive for specific applications. Microalgae also can be used as
livestock feed Fodder (), also called provender (), is any agricultural foodstuff used specifically to feed domesticated livestock, such as cattle, rabbits, sheep, horses, chickens and pigs. "Fodder" refers particularly to food given to the animals (includin ...
due to their proteins. Even more, some species of microalgae produce valuable compounds such as pigments and pharmaceuticals.


Production

Two main ways of cultivating microalgae are raceway pond systems and photo-bioreactors. Raceway pond systems are constructed by a closed loop oval channel that has a paddle wheel to circulate water and prevent sedimentation. The channel is open to the air and its depth is in the range of . The pond needs to be kept shallow since self-shading and optical absorption can cause the limitation of light penetration through the solution of algae broth. PBRs's culture medium is constructed by closed transparent array of tubes. It has a central reservoir which circulated the microalgae broth. PBRs is an easier system to be controlled compare to the raceway pond system, yet it costs a larger overall production expenses. The carbon emissions from microalgae biomass produced in raceway ponds could be compared to the emissions from conventional biodiesel by having inputs of energy and nutrients as carbon-intensive. The corresponding emissions from microalgae biomass produced in PBRs could also be compared and might even exceed the emissions from conventional fossil diesel. The inefficiency is due to the amount of electricity used to pump the algae broth around the system. Using co-product to generate electricity is one strategy that might improve the overall carbon balance. Another thing that needs to be acknowledged is that environmental impacts can also come from water management, carbon dioxide handling, and nutrient supply, several aspects that could constrain system design and implementation options. But, in general, Raceway Pond systems demonstrate a more attractive energy balance than PBR systems.


Economy

Production cost of microalgae-biofuel through implementation of raceway pond systems is dominated by the operational cost which includes labour, raw materials, and utilities. In raceway pond system, during the cultivation process, electricity takes up the largest energy fraction of total operational energy requirements. It is used to circulate the microalgae cultures. It takes up an energy fraction ranging from 22% to 79%. In contrast, capital cost dominates the cost of production of microalgae-biofuel in PBRs. This system has a high installation cost though the operational cost is relatively lower than raceway pond systems. Microalgae-biofuel production costs a larger amount of money compared to fossil fuel production. The cost estimation of producing microalgae-biofuel is around , which is considerably more expensive than conventional gasoline.


Environmental impact

The construction of large-scale microalgae cultivation facilities would inevitably result in negative environmental impacts related to land use change, such as the destruction of existing natural habitats. Microalgae can also under certain conditions emit greenhouse gases, like
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Ea ...
or
nitrous oxide Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or nos, is a chemical compound, an oxide of nitrogen with the formula . At room temperature, it is a colourless non-flammable gas, and has ...
, or foul-smelling gases, like hydrogen sulfide, although this has not been widely studied to date. If poorly managed, toxins naturally produced by microalgae may leak into the surrounding soil or ground water.


Production

Water undergoes electrolysis at high temperatures to form hydrogen gas and oxygen gas. The energy to perform this is extracted from renewable sources such as wind power. Then, the hydrogen is reacted with compressed carbon dioxide captured by
direct air capture Direct air capture (DAC) is a process of capturing carbon dioxide () directly from the ambient air (as opposed to capturing from point sources, such as a cement factory or biomass power plant) and generating a concentrated stream of for seque ...
. The reaction produces blue crude which consists of hydrocarbon. The blue crude is then refined to produce high efficiency E-diesel. This method is, however, still debatable because with the current production capability it can only produce 3,000 liters in a few months, 0.0002% of the daily production of fuel in the US. Furthermore, the thermodynamic and economic feasibility of this technology have been questioned. An article suggests that this technology does not create an alternative to fossil fuel but rather converting renewable energy into liquid fuel. The article also states that the energy return on energy invested using fossil diesel is 18 times higher than that for e-diesel.


History

Investigation of carbon-neutral fuels has been ongoing for decades. A 1965 report suggested synthesizing methanol from carbon dioxide in air using nuclear power for a mobile fuel depot. Shipboard production of synthetic fuel using
nuclear power Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced ...
was studied in 1977 and 1995. A 1984 report studied the recovery of carbon dioxide from fossil fuel plants. A 1995 report compared converting vehicle fleets for the use of carbon-neutral methanol with the further synthesis of gasoline.


See also


References


Books and reports

*


Notes


Further reading

* — ha
10 citing articles
as of September 2012, many of which discuss efficiency and cost of air and flue recovery. * — claims US$100/ton CO2 extraction from air, not counting capital expenses. *


External links


Doty Windfuels
(Columbia, South Carolina)
Cost Model for US Navy Zero Carbon Nuclear Synfuel Process
spreadsheet by John Morgan (January 2013
source


{{DEFAULTSORT:Carbon neutral fuel Alternative energy economy Carbon dioxide Chemical engineering Economics and climate change Emissions reduction Environmental engineering Greenhouse gases Organometallic chemistry Renewable energy economy Sustainable technologies Synthetic fuels