Bohr–Einstein debates
   HOME

TheInfoList



OR:

The Bohr–Einstein debates were a series of public disputes about
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
between
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
and
Niels Bohr Niels Henrik David Bohr (; 7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922 ...
. Their debates are remembered because of their importance to the
philosophy of science Philosophy of science is a branch of philosophy concerned with the foundations, methods, and implications of science. The central questions of this study concern what qualifies as science, the reliability of scientific theories, and the ultim ...
, since the disagreements and the outcome of Bohr's version of quantum mechanics that became the prevalent view form the root of the modern understanding of physics. Most of Bohr's version of the events held in
Solvay Solvay may refer to: Companies and organizations * Solvay Brussels School of Economics and Management, Brussels, Belgium * Solvay Conference, founded by Ernest Solvay, deals with open questions in physics and chemistry * Solvay Indupa, an Argentin ...
in 1927 and other places was first written by Bohr decades later in an article titled, "Discussions with Einstein on Epistemological Problems in Atomic Physics". From Albert Einstein: Philosopher-Scientist (1949), publ. Cambridge University Press, 1949. Niels Bohr's report of conversations with Einstein. Based on the article, the philosophical issue of the debate was whether Bohr's
Copenhagen Interpretation The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, principally attributed to Niels Bohr and Werner Heisenberg. It is one of the oldest of numerous proposed interpretations of quantum mechanics, as feat ...
of quantum mechanics, which centered on his belief of complementarity, was valid in explaining nature. Despite their differences of opinion and the succeeding discoveries that helped solidify quantum mechanics, Bohr and Einstein maintained a mutual admiration that was to last the rest of their lives. The debates represent one of the highest points of scientific research in the first half of the twentieth century because it called attention to an element of quantum theory,
quantum non-locality In theoretical physics, quantum nonlocality refers to the phenomenon by which the measurement statistics of a multipartite quantum system do not admit an interpretation in terms of a local realistic theory. Quantum nonlocality has been experimen ...
, which is central to our modern understanding of the physical world. The consensus view of professional physicists has been that Bohr proved victorious in his defense of quantum theory, and definitively established the fundamental probabilistic character of quantum measurement.


Pre-revolutionary debates

Einstein was the first physicist to say that
Planck Max Karl Ernst Ludwig Planck (, ; 23 April 1858 – 4 October 1947) was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial contributions to theoretical p ...
's discovery of the quantum ( ''h'') would require a rewriting of the laws of
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
. To support his point, in 1905 he proposed that light sometimes acts as a particle which he called a light
quantum In physics, a quantum (plural quanta) is the minimum amount of any physical entity ( physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizat ...
(see
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
and
wave–particle duality Wave–particle duality is the concept in quantum mechanics that every particle or quantum entity may be described as either a particle or a wave. It expresses the inability of the classical physics, classical concepts "particle" or "wave" to fu ...
). Bohr was one of the most vocal opponents of the photon idea and did not openly embrace it until 1925.Pais The photon appealed to Einstein because he saw it as a physical reality (although a confusing one) behind the numbers presented by Planck mathematically in 1900. Bohr disliked it because it made the choice of mathematical solution arbitrary. Bohr did not like a scientist having to choose between equations.Bolles This was perhaps the first real Bohr-Einstein debate. Einstein had proposed the photon in 1905, and Compton proved that the photon existed experimentally in 1922, but Bohr refused to believe the photon existed even then. Bohr fought back against the existence of the quantum of light (photon) by writing the
BKS theory The Bohr–Kramers–Slater theory (BKS theory) was perhaps the final attempt at understanding the interaction of matter and electromagnetic radiation on the basis of the so-called old quantum theory, in which quantum phenomena are treated by imposi ...
in 1924. However, Einstein was right and Bohr proved to be wrong about light quanta. Although Bohr and Einstein disagreed, they were great friends all their lives and enjoyed using each other as a foil. The year 1913 brought the Bohr model of the hydrogen atom, which made use of the quantum to explain the atomic spectrum although at the time Bohr did not believe the atom to be wave-like but like a solar system so that the equations he used were for rotational orbits of particles similar to planets, yet Planck’s constant had been invented for light radiation in black bodies. Einstein was at first skeptical about using h for a solar system style atom, but quickly changed his mind and admitted his shift in mindset. From 1913 to 1919, Einstein studied and revised
Arnold Sommerfeld Arnold Johannes Wilhelm Sommerfeld, (; 5 December 1868 – 26 April 1951) was a German theoretical physicist who pioneered developments in atomic and quantum physics, and also educated and mentored many students for the new era of theoretic ...
’s extension of the Bohr atom to include the
Stark effect The Stark effect is the shifting and splitting of spectral lines of atoms and molecules due to the presence of an external electric field. It is the electric-field analogue of the Zeeman effect, where a spectral line is split into several compo ...
and
Zeeman effect The Zeeman effect (; ) is the effect of splitting of a spectral line into several components in the presence of a static magnetic field. It is named after the Dutch physicist Pieter Zeeman, who discovered it in 1896 and received a Nobel pr ...
. The coefficients Einstein created during this time are still named for him and still in use today. . Translated in ....


The quantum revolution

The quantum revolution of the mid-1920s occurred under the direction of both Einstein and Bohr, and their post-revolutionary debates were about making sense of the change. The shocks for Einstein began in 1925 when
Werner Heisenberg Werner Karl Heisenberg () (5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the main pioneers of the theory of quantum mechanics. He published his work in 1925 in a Über quantentheoretische Umdeutung kinematis ...
introduced matrix equations that removed the Newtonian elements of space and time from any underlying reality. However, when
Erwin Schrödinger Erwin Rudolf Josef Alexander Schrödinger (, ; ; 12 August 1887 – 4 January 1961), sometimes written as or , was a Nobel Prize-winning Austrian physicist with Irish citizenship who developed a number of fundamental results in quantum theo ...
sent a preprint of his new equation to Einstein, Einstein wrote back hailing his equation as a decisive advance of “true genius.” But the next shock came in 1926 when
Max Born Max Born (; 11 December 1882 – 5 January 1970) was a German physicist and mathematician who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics and supervised the work of a ...
proposed that mechanics were to be understood as a probability without any causal explanation. Both Einstein and Erwin Schrödinger rejected this interpretation with its renunciation of
causality Causality (also referred to as causation, or cause and effect) is influence by which one event, process, state, or object (''a'' ''cause'') contributes to the production of another event, process, state, or object (an ''effect'') where the cau ...
which had been a key feature of science previous to Quantum Mechanics and was still a feature of
General Relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
. In a 1926 letter to
Max Born Max Born (; 11 December 1882 – 5 January 1970) was a German physicist and mathematician who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics and supervised the work of a ...
, Einstein wrote: "quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the “old one”. I, at any rate, am convinced that He odis not playing at dice." At first, even Heisenberg had heated disputes with Bohr that his matrix mechanics was not compatible with the Schrödinger Equation. And Bohr was at first opposed to the Uncertainty Principle. But by the Fifth Solvay Conference held in October 1927 Heisenberg and Born concluded that the revolution was over and nothing further was needed. It was at that last stage that Einstein's skepticism turned to dismay. He believed that much had been accomplished, but the reasons for the mechanics still needed to be understood. Einstein's refusal to accept the revolution as complete reflected his desire to see developed a model for the underlying causes from which these apparent random statistical methods resulted. He did not reject the idea that positions in space-time could never be completely known but did not want to allow the
uncertainty principle In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physic ...
to necessitate a seemingly random, non-deterministic mechanism by which the laws of physics operated. Einstein himself was a statistical thinker but disagreed that no more needed to be discovered and clarified. Einstein worked the rest of his life to discover a new theory that would make sense of Quantum Mechanics and return causality to science, what many now call, the Theory of Everything. Bohr, meanwhile, was dismayed by none of the elements that troubled Einstein. He made his own peace with the contradictions by proposing a principle of complementarity that emphasized the role of the observer over the observed.


Post-revolution: First stage

As mentioned above, Einstein's position underwent significant modifications over the course of the years. In the first stage, Einstein refused to accept quantum indeterminism and sought to demonstrate that the principle of indeterminacy could be violated, suggesting ingenious ''
thought experiment A thought experiment is a hypothetical situation in which a hypothesis, theory, or principle is laid out for the purpose of thinking through its consequences. History The ancient Greek ''deiknymi'' (), or thought experiment, "was the most anc ...
s'' which should permit the accurate determination of incompatible variables, such as position and velocity, or to explicitly reveal simultaneously the wave and the particle aspects of the same process. (The main source and substance for these thought experiments is solely from Bohr’s account twenty years later.) Bohr admits: “As regards the account of the conversations I am of course aware that I am relying only on my own memory, just as I am prepared for the possibility that many features of the development of quantum theory, in which Einstein has played so large a part, may appear to himself in a different light.”


Einstein's argument

The first serious attack by Einstein on the "orthodox" conception took place during the '' Fifth Solvay International Conference'' on
Electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
and
Photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
in 1927. Einstein pointed out how it was possible to take advantage of the (universally accepted) laws of
conservation of energy In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be ''conserved'' over time. This law, first proposed and tested by Émilie du Châtelet, means tha ...
and of impulse (
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
) in order to obtain information on the state of a particle in a process of interference which, according to the principle of indeterminacy or that of complementarity, should not be accessible. In order to follow his argumentation and to evaluate Bohr's response, it is convenient to refer to the experimental apparatus illustrated in figure A. A beam of light perpendicular to the ''X'' axis propagates in the direction ''z'' and encounters a screen ''S''1 with a narrow (relative to the wavelength of the ray) slit. After having passed through the slit, the wave function diffracts with an angular opening that causes it to encounter a second screen ''S''2 with two slits. The successive propagation of the wave results in the formation of the interference figure on the final screen ''F''. At the passage through the two slits of the second screen ''S''2, the wave aspects of the process become essential. In fact, it is precisely the interference between the two terms of the
quantum superposition Quantum superposition is a fundamental principle of quantum mechanics. It states that, much like waves in classical physics, any two (or more) quantum states can be added together ("superposed") and the result will be another valid quantum ...
corresponding to states in which the particle is localized in one of the two slits which implies that the particle is "guided" preferably into the zones of constructive interference and cannot end up in a point in the zones of destructive interference (in which the wave function is nullified). It is also important to note that any experiment designed to evidence the " corpuscular" aspects of the process at the passage of the screen ''S''2 (which, in this case, reduces to the determination of which slit the particle has passed through) inevitably destroys the wave aspects, implies the disappearance of the interference figure and the emergence of two concentrated spots of diffraction which confirm our knowledge of the trajectory followed by the particle. At this point Einstein brings into play the first screen as well and argues as follows: since the incident particles have velocities (practically) perpendicular to the screen ''S''1, and since it is only the interaction with this screen that can cause a deflection from the original direction of propagation, by the law of conservation of impulse which implies that the sum of the impulses of two systems which interact is conserved, if the incident particle is deviated toward the top, the screen will recoil toward the bottom and vice versa. In realistic conditions the mass of the screen is so large that it will remain stationary, but, in principle, it is possible to measure even an infinitesimal recoil. If we imagine taking the measurement of the impulse of the screen in the direction ''X'' after every single particle has passed, we can know, from the fact that the screen will be found recoiled toward the top (bottom), whether the particle in question has been deviated toward the bottom or top, and therefore through which slit in ''S''2 the particle has passed. But since the determination of the direction of the recoil of the screen after the particle has passed cannot influence the successive development of the process, we will still have an interference figure on the screen ''F''. The interference takes place precisely because the state of the system is the ''superposition'' of two states whose wave functions are non-zero only near one of the two slits. On the other hand, if every particle passes through only the slit ''b'' or the slit ''c'', then the set of systems is the statistical mixture of the two states, which means that interference is not possible. If Einstein is correct, then there is a violation of the principle of indeterminacy. This thought experiment was begun in a simpler form during the General Discussion portion of the actual proceedings during the 1927 Solvay conference. In those official proceedings, Bohr’s reply is recorded as: “I feel myself in a very difficult position because I don’t understand precisely the point that Einstein is trying to make.” Einstein had explained, “it could happen that the same elementary process produces an action in two or several places on the screen. But the interpretation, according to which psi squared expresses the probability that this particular particle is found at a given point, assumes an entirely peculiar mechanism of action at a distance.” It is clear from this that Einstein was referring to separability (in particular, and most importantly local causality, i.e. locality), not indeterminacy. In fact, Paul Ehrenfest wrote a letter to Bohr stating that the 1927 thought experiments of Einstein had nothing to do with the Uncertainty Relations, as Einstein had already accepted these “and for a long time never doubted.”


Bohr's response

Bohr evidently misunderstood Einstein's argument about the quantum mechanical violation of relativistic causality (locality) and instead focused on the consistency of quantum indeterminacy. Bohr's response was to illustrate Einstein's idea more clearly using the diagram in Figure C. (Figure C shows a fixed screen S1 that is bolted down. Then try to imagine one that can slide up or down along a rod instead of a fixed bolt.) Bohr observes that extremely precise knowledge of any (potential) vertical motion of the screen is an essential presupposition in Einstein's argument. In fact, if its velocity in the direction ''X'' ''before'' the passage of the particle is not known with a precision substantially greater than that induced by the recoil (that is, if it were already moving vertically with an unknown and greater velocity than that which it derives as a consequence of the contact with the particle), then the determination of its motion after the passage of the particle would not give the information we seek. However, Bohr continues, an extremely precise determination of the velocity of the screen, when one applies the principle of indeterminacy, implies an inevitable imprecision of its position in the direction ''X''. Before the process even begins, the screen would therefore occupy an indeterminate position at least to a certain extent (defined by the formalism). Now consider, for example, the point ''d'' in figure A, where the interference is destructive. Any displacement of the first screen would make the lengths of the two paths, ''a–b–d'' and ''a–c–d'', different from those indicated in the figure. If the difference between the two paths varies by half a wavelength, at point ''d'' there will be constructive rather than destructive interference. The ideal experiment must average over all the possible positions of the screen S1, and, for every position, there corresponds, for a certain fixed point ''F'', a different type of interference, from the perfectly destructive to the perfectly constructive. The effect of this averaging is that the pattern of interference on the screen ''F'' will be uniformly grey. Once more, our attempt to evidence the corpuscular aspects in ''S''2 has destroyed the possibility of interference in ''F'', which depends crucially on the wave aspects. As Bohr recognized, for the understanding of this phenomenon "it is decisive that, contrary to genuine instruments of measurement, these bodies along with the particles would constitute, in the case under examination, the system to which the quantum-mechanical formalism must apply. With respect to the precision of the conditions under which one can correctly apply the formalism, it is essential to include the entire experimental apparatus. In fact, the introduction of any new apparatus, such as a mirror, in the path of a particle could introduce new effects of interference which influence essentially the predictions about the results which will be registered at the end." Further along, Bohr attempts to resolve this ambiguity concerning which parts of the system should be considered macroscopic and which not: :''In particular, it must be very clear that...the unambiguous use of spatiotemporal concepts in the description of atomic phenomena must be limited to the registration of observations which refer to images on a photographic lens or to analogous practically irreversible effects of amplification such as the formation of a drop of water around an ion in a dark room.'' Bohr's argument about the impossibility of using the apparatus proposed by Einstein to violate the principle of indeterminacy depends crucially on the fact that a macroscopic system (the screen ''S''1) obeys quantum laws. On the other hand, Bohr consistently held that, in order to illustrate the microscopic aspects of reality, it is necessary to set off a process of amplification, which involves macroscopic apparatuses, whose fundamental characteristic is that of obeying classical laws and which can be described in classical terms. This ambiguity would later come back in the form of what is still called today the
measurement problem In quantum mechanics, the measurement problem is the problem of how, or whether, wave function collapse occurs. The inability to observe such a collapse directly has given rise to different interpretations of quantum mechanics and poses a key s ...
. However, Bohr in his article refuting the EPR paper, states “there is no question of a mechanical disturbance of the system under investigation.” Heisenberg quotes Bohr as saying, “I find all such assertions as ‘observation introduces uncertainty into the phenomenon’ inaccurate and misleading.” Manjit Kumar’s book on the Bohr-Einstein debates finds these assertions by Bohr contrary to his arguments.


The principle of indeterminacy applied to time and energy

In many textbook examples and popular discussions of quantum mechanics, the principle of indeterminacy is explained by reference to the pair of variables position and velocity (or momentum). It is important to note that the wave nature of physical processes implies that there must exist another relation of indeterminacy: that between time and energy. In order to comprehend this relation, it is convenient to refer to the experiment illustrated in Figure D, which results in the propagation of a wave which is limited in spatial extension. Assume that, as illustrated in the figure, a ray which is extremely extended longitudinally is propagated toward a screen with a slit furnished with a shutter which remains open only for a very brief interval of time \Delta t . Beyond the slit, there will be a wave of limited spatial extension which continues to propagate toward the right. A perfectly monochromatic wave (such as a musical note which cannot be divided into harmonics) has infinite spatial extent. In order to have a wave which is limited in spatial extension (which is technically called a
wave packet In physics, a wave packet (or wave train) is a short "burst" or "envelope" of localized wave action that travels as a unit. A wave packet can be analyzed into, or can be synthesized from, an infinite set of component sinusoidal waves of diff ...
), several waves of different frequencies must be superimposed and distributed continuously within a certain interval of frequencies around an average value, such as \nu_0 . It then happens that at a certain instant, there exists a spatial region (which moves over time) in which the contributions of the various fields of the superposition add up constructively. Nonetheless, according to a precise mathematical theorem, as we move far away from this region, the phases of the various fields, at any specified point, are distributed causally and destructive interference is produced. The region in which the wave has non-zero amplitude is therefore spatially limited. It is easy to demonstrate that, if the wave has a spatial extension equal to \Delta x (which means, in our example, that the shutter has remained open for a time \Delta t = \Delta x/v where v is the velocity of the wave), then the wave contains (or is a superposition of) various monochromatic waves whose frequencies cover an interval \Delta \nu which satisfies the relation: : \Delta \nu \ge \frac. Remembering that in the universal relation of Planck, frequency and energy are proportional: : E = h\nu \, it follows immediately from the preceding inequality that the particle associated with the wave should possess an energy which is not perfectly defined (since different frequencies are involved in the superposition) and consequently there is indeterminacy in energy: : \Delta E = h\,\Delta\nu \ge \frac. From this it follows immediately that: : \Delta E \, \Delta t \ge h which is the relation of indeterminacy between time and energy.


Einstein's second criticism

At the sixth Congress of Solvay in 1930, the indeterminacy relation just discussed was Einstein's target of criticism. His idea contemplates the existence of an experimental apparatus which was subsequently designed by Bohr in such a way as to emphasize the essential elements and the key points which he would use in his response. Einstein considers a box (called Einstein's box; see figure) containing electromagnetic radiation and a clock which controls the opening of a shutter which covers a hole made in one of the walls of the box. The shutter uncovers the hole for a time \Delta t which can be chosen arbitrarily. During the opening, we are to suppose that a photon, from among those inside the box, escapes through the hole. In this way a wave of limited spatial extension has been created, following the explanation given above. In order to challenge the indeterminacy relation between time and energy, it is necessary to find a way to determine with adequate precision the energy that the photon has brought with it. At this point, Einstein turns to his celebrated relation between mass and energy of special relativity: E=mc^2 . From this it follows that knowledge of the mass of an object provides a precise indication about its energy. The argument is therefore very simple: if one weighs the box before and after the opening of the shutter and if a certain amount of energy has escaped from the box, the box will be lighter. The variation in mass multiplied by c^2 will provide precise knowledge of the energy emitted. Moreover, the clock will indicate the precise time at which the event of the particle's emission took place. Since, in principle, the mass of the box can be determined to an arbitrary degree of accuracy, the energy emitted can be determined with a precision \Delta E as accurate as one desires. Therefore, the product \Delta E \Delta t can be rendered less than what is implied by the principle of indeterminacy. The idea is particularly acute and the argument seemed unassailable. It's important to consider the impact of all of these exchanges on the people involved at the time. Leon Rosenfeld, a scientist who had participated in the Congress, described the event several years later: :''It was a real shock for Bohr...who, at first, could not think of a solution. For the entire evening he was extremely agitated, and he continued passing from one scientist to another, seeking to persuade them that it could not be the case, that it would have been the end of physics if Einstein were right; but he couldn't come up with any way to resolve the paradox. I will never forget the image of the two antagonists as they left the club: Einstein, with his tall and commanding figure, who walked tranquilly, with a mildly ironic smile, and Bohr who trotted along beside him, full of excitement...The morning after saw the triumph of Bohr.''


Bohr's Triumph

The "Triumph of Bohr" consisted in his demonstrating, once again, that Einstein's subtle argument was not conclusive, but even more so in the way that he arrived at this conclusion by appealing precisely to one of the great ideas of Einstein: the principle of equivalence between gravitational mass and inertial mass, together with the time dilation of special relativity, and a consequence of these—the
Gravitational redshift In physics and general relativity, gravitational redshift (known as Einstein shift in older literature) is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well (seem to) lose energy. This loss of energy ...
. Bohr showed that, in order for Einstein's experiment to function, the box would have to be suspended on a spring in the middle of a gravitational field. In order to obtain a measurement of the weight of the box, a pointer would have to be attached to the box which corresponded with the index on a scale. After the release of a photon, a mass m could be added to the box to restore it to its original position and this would allow us to determine the energy E = mc^2 that was lost when the photon left. The box is immersed in a gravitational field of strength g, and the gravitational redshift affects the speed of the clock, yielding uncertainty \Delta t in the time t required for the pointer to return to its original position. Bohr gave the following calculation establishing the uncertainty relation \Delta E \Delta t \ge h . Let the uncertainty in the mass m be denoted by \Delta m. Let the error in the position of the pointer be \Delta q. Adding the load m to the box imparts a momentum p that we can measure with an accuracy \Delta p, where \Delta p \Delta qh. Clearly \Delta p \le tg\Delta m, and therefore tg\Delta m\Delta q \ge h. By the redshift formula (which follows from the principle of equivalence and the time dilation), the uncertainty in the time t is \Delta t = c^ gt\Delta q, and \Delta E = c^2\Delta m, and so \Delta E \Delta t = c^2\Delta m \Delta t \ge h. We have therefore proven the claimed \Delta E\Delta t \ge h. More recent analyses of the photon box debate questions Bohr’s understanding of Einstein’s thought experiment, referring instead to a prelude to the EPR paper, focusing on inseparability rather than indeterminism being at issue.


Post-revolution: Second stage

The second phase of Einstein's "debate" with Bohr and the orthodox interpretation is characterized by an acceptance of the fact that it is, as a practical matter, impossible to simultaneously determine the values of certain incompatible quantities, but the rejection that this implies that these quantities do not actually have precise values. Einstein rejects the probabilistic interpretation of Born and insists that quantum probabilities are
epistemic Epistemology (; ), or the theory of knowledge, is the branch of philosophy concerned with knowledge. Epistemology is considered a major subfield of philosophy, along with other major subfields such as ethics, logic, and metaphysics. Episte ...
and not
ontological In metaphysics, ontology is the philosophical study of being, as well as related concepts such as existence, becoming, and reality. Ontology addresses questions like how entities are grouped into categories and which of these entities exi ...
in nature. As a consequence, the theory must be incomplete in some way. He recognizes the great value of the theory, but suggests that it "does not tell the whole story", and, while providing an appropriate description at a certain level, it gives no information on the more fundamental underlying level: :''I have the greatest consideration for the goals which are pursued by the physicists of the latest generation which go under the name of quantum mechanics, and I believe that this theory represents a profound level of truth, but I also believe that the restriction to laws of a statistical nature will turn out to be transitory....Without doubt quantum mechanics has grasped an important fragment of the truth and will be a paragon for all future fundamental theories, for the fact that it must be deducible as a limiting case from such foundations, just as electrostatics is deducible from Maxwell's equations of the electromagnetic field or as thermodynamics is deducible from statistical mechanics.'' These thoughts of Einstein would set off a line of research into
hidden variable theories In physics, hidden-variable theories are proposals to provide explanations of quantum mechanical phenomena through the introduction of (possibly unobservable) hypothetical entities. The existence of fundamental indeterminacy for some measurem ...
, such as the
Bohm interpretation Bohm may refer to: * Bohm (surname) * Bohm Dialogue, free-flowing group conversation Physics * Aharonov–Bohm effect of electromagnetic potential on a particle * Bohm sheath criterion for a Debye sheath plasma layer * Bohm diffusion of plasma ...
, in an attempt to complete the edifice of quantum theory. If quantum mechanics can be made ''complete'' in Einstein's sense, it cannot be done locally; this fact was demonstrated by
John Stewart Bell John Stewart Bell FRS (28 July 1928 – 1 October 1990) was a physicist from Northern Ireland and the originator of Bell's theorem, an important theorem in quantum physics regarding hidden-variable theories. In 2022, the Nobel Prize in Phy ...
with the formulation of Bell's inequality in 1964. Although, the Bell inequality ruled out local hidden variable theories, Bohm’s theory was not ruled out. A 2007 experiment ruled out a large class of non-Bohmian non-local hidden variable theories, though not Bohmian mechanics itself.


Post-revolution: Third stage


The argument of EPR

In 1935 Einstein,
Boris Podolsky Boris Yakovlevich Podolsky (russian: link=no, Бори́с Я́ковлевич Подо́льский; June 29, 1896 – November 28, 1966) was a Russian-American physicist of Jewish descent, noted for his work with Albert Einstein and Nathan ...
and
Nathan Rosen Nathan Rosen (Hebrew: נתן רוזן; March 22, 1909 – December 18, 1995) was an American-Israeli physicist noted for his study on the structure of the hydrogen atom and his work with Albert Einstein and Boris Podolsky on entangled wave functio ...
developed an argument, published in the magazine ''Physical Review'' with the title ''Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?'', based on an entangled state of two systems. Before coming to this argument, it is necessary to formulate another hypothesis that comes out of Einstein's work in relativity: the
principle of locality In physics, the principle of locality states that an object is influenced directly only by its immediate surroundings. A theory that includes the principle of locality is said to be a "local theory". This is an alternative to the concept of in ...
. ''The elements of physical reality which are objectively possessed cannot be influenced instantaneously at a distance.''
David Bohm David Joseph Bohm (; 20 December 1917 – 27 October 1992) was an American-Brazilian-British scientist who has been described as one of the most significant theoretical physicists of the 20th centuryPeat 1997, pp. 316-317 and who contributed ...
picked up the EPR argument in 1951. In his textbook ''Quantum Theory,'' he reformulated it in terms of an entangled state of two particles, which can be summarized as follows: 1) Consider a system of two photons which at time ''t'' are located, respectively, in the spatially distant regions ''A'' and ''B'' and which are also in the entangled state of polarization \left, \Psi\right\rang described below: : \left, \Psi,t\right\rang = \frac1\left, 1,V\right\rang \left, 2,V\right\rang + \frac1\left, 1,H\right\rang \left, 2,H\right\rang. 2) At time ''t'' the photon in region A is tested for vertical polarization. Suppose that the result of the measurement is that the photon passes through the filter. According to the reduction of the wave packet, the result is that, at time ''t'' + ''dt'', the system becomes : \left, \Psi,t+dt\right\rang = \left, 1,V\right\rang \left, 2,V\right\rang. 3) At this point, the observer in A who carried out the first measurement on photon ''1'', without doing anything else that could disturb the system or the other photon ("assumption (R)", below), can predict with certainty that photon ''2'' will pass a test of vertical polarization. It follows that photon ''2'' possesses an element of physical reality: that of having a vertical polarization. 4) According to the assumption of locality, it cannot have been the action carried out in A which created this element of reality for photon ''2''. Therefore, we must conclude that the photon possessed the property of being able to pass the vertical polarization test ''before'' and ''independently of'' the measurement of photon ''1''. 5) At time ''t'', the observer in ''A'' could have decided to carry out a test of polarization at 45°, obtaining a certain result, for example, that the photon passes the test. In that case, he could have concluded that photon ''2'' turned out to be polarized at 45°. Alternatively, if the photon did not pass the test, he could have concluded that photon ''2'' turned out to be polarized at 135°. Combining one of these alternatives with the conclusion reached in 4, it seems that photon ''2'', before the measurement took place, possessed both the property of being able to pass with certainty a test of vertical polarization and the property of being able to pass with certainty a test of polarization at either 45° or 135°. These properties are incompatible according to the formalism. 6) Since natural and obvious requirements have forced the conclusion that photon ''2'' simultaneously possesses incompatible properties, this means that, even if it is not possible to determine these properties simultaneously and with arbitrary precision, they are nevertheless possessed objectively by the system. But quantum mechanics denies this possibility and it is therefore an incomplete theory.


Bohr's response

Bohr's response to this argument was published, five months later than the original publication of EPR, in the same magazine ''Physical Review'' and with exactly the same title as the original. The crucial point of Bohr's answer is distilled in a passage which he later had republished in
Paul Arthur Schilpp Paul Arthur Schilpp (; February 6, 1897 – September 6, 1993) was an American philosopher and educator. Biography Schilpp was born in Dillenburg, Germany and immigrated to the United States prior to World War I. Schilpp taught at Northwester ...
's book ''Albert Einstein, scientist-philosopher'' in honor of the seventieth birthday of Einstein. Bohr attacks assumption (R) of EPR by stating: :''The statement of the criterion in question is ambiguous with regard to the expression "without disturbing the system in any way". Naturally, in this case no mechanical disturbance of the system under examination can take place in the crucial stage of the process of measurement. But even in this stage there arises the essential problem of an influence on the precise conditions which define the possible types of prediction which regard the subsequent behaviour of the system...their arguments do not justify their conclusion that the quantum description turns out to be essentially incomplete...This description can be characterized as a rational use of the possibilities of an unambiguous interpretation of the process of measurement compatible with the finite and uncontrollable interaction between the object and the instrument of measurement in the context of quantum theory''.


Confirmatory experiments

Years after the exposition of Einstein via his EPR experiment, many physicists started performing experiments to show that Einstein's view of a spooky action in a distance is indeed consistent with the laws of physics. The first experiment to definitively prove that this was the case was in 1949, when physicists
Chien-Shiung Wu ) , spouse = , residence = , nationality = ChineseAmerican , field = Physics , work_institutions = Institute of Physics, Academia Sinica University of California at Berkeley Smith College Princeton University Columbia UniversityZhejiang ...
and her colleague Irving Shaknov showcased this theory in real time using photons. Their work was published in the new year of the succeeding decade. Later in 1975,
Alain Aspect Alain Aspect (; born 15 June 1947) is a French physicist noted for his experimental work on quantum entanglement. Aspect was awarded the 2022 Nobel Prize in Physics, jointly with John Clauser and Anton Zeilinger, "for experiments with entangl ...
proposed in an article, an experiment meticulous enough to be irrefutable: ''Proposed experiment to test the non-separability of quantum mechanics''. This led Aspect, together with physicists Philippe Grangier, Gérard Roger, and
Jean Dalibard Jean Dalibard (born 8 December 1958) is a French physicist, Professor at the École Polytechnique, member of the French Academy of Sciences and a researcher at the École Normale Supérieure. In 2009, Dalibard received the Blaise Pascal medal of ...
) to set up several increasingly complex experiments between 1980 and 1982 that further established quantum entanglement. Finally in 1998, the Geneva experiment tested the correlation between two detectors set 30 kilometres apart, virtually across the whole city, using the Swiss optical fibre telecommunication network. The distance gave the necessary time to commute the angles of the polarizers. It was therefore possible to have a completely random electrical shunting. Furthermore, the two distant polarizers were entirely independent. The measurements were recorded on each side, and compared after each experiment by dating each measurement using an atomic clock. The experiment once again verified entanglement under the strictest and most ideal conditions possible. If Aspect's experiment implied that a hypothetical coordination signal travel twice as fast as ''c'', Geneva's reached 10 million times ''c''.


Post-revolution: Fourth stage

In his last writing on the topic, Einstein further refined his position, making it completely clear that what really disturbed him about the quantum theory was the problem of the total renunciation of all minimal standards of realism, even at the microscopic level, that the acceptance of the completeness of the theory implied. Since the early days of quantum theory the assumption of locality and Lorentz invariance guided his thoughts and led to his determination that if we demand strict locality then hidden variables are naturally implied apropos EPR. Bell, starting from this EPR logic (which is widely misunderstood or forgotten) showed that local hidden variables imply a conflict with experiment. Ultimately what was at stake for Einstein was the assumption that physical reality be universally local. Although the majority of experts in the field agree that Einstein was wrong, the current understanding is still not complete (see
Interpretation of quantum mechanics An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics might correspond to experienced reality. Although quantum mechanics has held up to rigorous and extremely precise tests in an extraor ...
).


See also

* Afshar's experiment *
Bell test experiments A Bell test, also known as Bell inequality test or Bell experiment, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Albert Einstein's concept of local realism. Named for John Stewart Bell, the ...
* Bell's theorem * Complementarity *
Copenhagen interpretation The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, principally attributed to Niels Bohr and Werner Heisenberg. It is one of the oldest of numerous proposed interpretations of quantum mechanics, as feat ...
*
Double-slit experiment In modern physics, the double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanic ...
*
Einstein's thought experiments A hallmark of Albert Einstein's career was his use of visualized thought experiments (german: Gedankenexperiment) as a fundamental tool for understanding physical issues and for elucidating his concepts to others. Einstein's thought experiments too ...
* Invariant set postulate * ''Quantum'' (book) *
Quantum eraser In quantum mechanics, the quantum eraser experiment is an interferometer experiment that demonstrates several fundamental aspects of quantum mechanics, including quantum entanglement and complementarity. The quantum eraser experiment is a vari ...
*
Schrödinger's cat In quantum mechanics, Schrödinger's cat is a thought experiment that illustrates a paradox of quantum superposition. In the thought experiment, a hypothetical cat may be considered simultaneously both alive and dead, while it is unobserved in ...
*
Uncertainty principle In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physic ...
* Wheeler's delayed choice experiment * Superdeterminism


References


Sources

* * * * Translated as "Quantum-theoretical Re-interpretation of kinematic and mechanical relations" in * *


Further reading

* Boniolo, G., (1997) ''Filosofia della Fisica'', Mondadori, Milan. * Bolles, Edmund Blair (2004) ''Einstein Defiant'', Joseph Henry Press, Washington, D.C. * Born, M. (1973) ''The Born Einstein Letters'', Walker and Company, New York, 1971. * Ghirardi, Giancarlo, (1997) ''Un'Occhiata alle Carte di Dio'', Il Saggiatore, Milan. * Pais, A., (1986) ''Subtle is the Lord... The Science and Life of Albert Einstein'', Oxford University Press, Oxford, 1982. * Shilpp, P.A., (1958) ''Albert Einstein: Philosopher-Scientist'', Northwestern University and Southern Illinois University, Open Court, 1951. {{DEFAULTSORT:Bohr-Einstein Debates Quantum measurement Albert Einstein Philosophy of physics History of physics Niels Bohr Scientific debates