Blueshift
   HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, a redshift is an increase in the
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
, and corresponding decrease in the
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
and photon energy, of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) li ...
(such as
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 te ...
). The opposite change, a decrease in wavelength and simultaneous increase in frequency and energy, is known as a negative redshift, or blueshift. The terms derive from the colours
red Red is the color at the long wavelength end of the visible spectrum of light, next to orange and opposite violet. It has a dominant wavelength of approximately 625–740 nanometres. It is a primary color in the RGB color model and a secondar ...
and
blue Blue is one of the three primary colours in the RYB colour model (traditional colour theory), as well as in the RGB (additive) colour model. It lies between violet and cyan on the spectrum of visible light. The eye perceives blue when ...
which form the extremes of the visible light spectrum. In
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
and
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
, the three main causes of electromagnetic redshift are # The radiation travels between objects which are moving apart (" relativistic" redshift, an example of the
relativistic Doppler effect The relativistic Doppler effect is the change in frequency (and wavelength) of light, caused by the relative motion of the source and the observer (as in the classical Doppler effect), when taking into account effects described by the special the ...
) #The radiation travels towards an object in a weaker
gravitational potential In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric ...
, i.e. towards an object in less strongly
curved In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that a ...
(flatter)
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
(
gravitational redshift In physics and general relativity, gravitational redshift (known as Einstein shift in older literature) is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well (seem to) lose energy. This loss of energy ...
) #The radiation travels through expanding space ( cosmological redshift). The observation that all sufficiently distant light sources show redshift corresponding to their distance from Earth is known as
Hubble's law Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
. Relativistic, gravitational, and cosmological redshifts can be understood under the umbrella of frame transformation laws. Gravitational waves, which also travel at the speed of light, are subject to the same redshift phenomena. Examples of strong redshifting are a
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
perceived as an
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
, or initially visible light perceived as radio waves. Subtler redshifts are seen in the
spectroscopic Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
observations of
astronomical Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, galaxi ...
objects, and are used in terrestrial technologies such as
Doppler radar A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the fr ...
and
radar gun A radar speed gun (also radar gun and speed trap gun) is a device used to measure the speed of moving objects. It is used in law-enforcement to measure the speed of moving vehicles and is often used in professional spectator sport, for things su ...
s. Other physical processes exist that can lead to a shift in the frequency of electromagnetic radiation, including scattering and optical effects; however, the resulting changes are distinguishable from (astronomical) redshift and are not generally referred to as such (see section on physical optics and radiative transfer). The value of a redshift is often denoted by the letter ''z'', corresponding to the fractional change in wavelength (positive for redshifts, negative for blueshifts), and by the wavelength ratio ''1 + z'' (which is >1 for redshifts, <1 for blueshifts).


History

The history of the subject began with the development in the 19th century of
wave In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (re ...
mechanics and the exploration of phenomena associated with the Doppler effect. The effect is named after
Christian Doppler Christian Andreas Doppler ( (); 29 November 1803 – 17 March 1853) was an Austrian mathematician and physicist. He is celebrated for his principle – known as the Doppler effect – that the observed frequency of a wave depends on the relative ...
, who offered the first known physical explanation for the phenomenon in 1842. The hypothesis was tested and confirmed for sound waves by the
Dutch Dutch commonly refers to: * Something of, from, or related to the Netherlands * Dutch people () * Dutch language () Dutch may also refer to: Places * Dutch, West Virginia, a community in the United States * Pennsylvania Dutch Country People E ...
scientist Christophorus Buys Ballot in 1845. Doppler correctly predicted that the phenomenon should apply to all waves, and in particular suggested that the varying
color Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are assoc ...
s of stars could be attributed to their motion with respect to the Earth. Before this was verified, however, it was found that stellar colors were primarily due to a star's
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
, not motion. Only later was Doppler vindicated by verified redshift observations. The first Doppler redshift was described by French physicist
Hippolyte Fizeau Armand Hippolyte Louis Fizeau FRS FRSE MIF (; 23 September 181918 September 1896) was a French physicist, best known for measuring the speed of light in the namesake Fizeau experiment. Biography Fizeau was born in Paris to Louis and Beatrice Fi ...
in 1848, who pointed to the shift in
spectral line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to iden ...
s seen in stars as being due to the Doppler effect. The effect is sometimes called the "Doppler–Fizeau effect". In 1868, British astronomer
William Huggins Sir William Huggins (7 February 1824 – 12 May 1910) was an English astronomer best known for his pioneering work in astronomical spectroscopy together with his wife, Margaret. Biography William Huggins was born at Cornhill, Middlesex, in ...
was the first to determine the velocity of a star moving away from the Earth by this method. In 1871, optical redshift was confirmed when the phenomenon was observed in
Fraunhofer lines In physics and optics, the Fraunhofer lines are a set of spectral absorption lines named after the German physicist Joseph von Fraunhofer (1787–1826). The lines were originally observed as dark features (absorption lines) in the optical spectru ...
using solar rotation, about 0.1 Å in the red. In 1887, Vogel and Scheiner discovered the ''annual Doppler effect'', the yearly change in the Doppler shift of stars located near the ecliptic due to the orbital velocity of the Earth. In 1901,
Aristarkh Belopolsky Aristarkh Apollonovich Belopolsky (Аристарх Аполлонович Белопольский) (, Moscow – 16 May 1934, Pulkovo (Saint Petersburg), Pulkovo, Leningrad Oblast, Leningrad) was a Russian astronomer. He was born in Moscow ...
verified optical redshift in the laboratory using a system of rotating mirrors. The earliest occurrence of the term ''red-shift'' in print (in this hyphenated form) appears to be by American astronomer Walter S. Adams in 1908, in which he mentions "Two methods of investigating that nature of the nebular red-shift". The word does not appear unhyphenated until about 1934 by Willem de Sitter. Beginning with observations in 1912,
Vesto Slipher Vesto Melvin Slipher (; November 11, 1875 – November 8, 1969) was an American astronomer who performed the first measurements of radial velocities for galaxies. He was the first to discover that distant galaxies are redshifted, thus providing t ...
discovered that most spiral galaxies, then mostly thought to be spiral nebulae, had considerable redshifts. Slipher first reports on his measurement in the inaugural volume of the '' Lowell Observatory Bulletin''. Three years later, he wrote a review in the journal ''
Popular Astronomy Amateur astronomy is a hobby where participants enjoy observing or imaging celestial objects in the sky using the unaided eye, binoculars, or telescopes. Even though scientific research may not be their primary goal, some amateur astronomers ...
''. In it he states that "the early discovery that the great Andromeda spiral had the quite exceptional velocity of –300 km(/s) showed the means then available, capable of investigating not only the spectra of the spirals but their velocities as well." Slipher reported the velocities for 15 spiral nebulae spread across the entire celestial sphere, all but three having observable "positive" (that is recessional) velocities. Subsequently, Edwin Hubble discovered an approximate relationship between the redshifts of such "nebulae" and the
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
s to them with the formulation of his eponymous
Hubble's law Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
. These observations corroborated Alexander Friedmann's 1922 work, in which he derived the Friedmann–Lemaître equations. They are today considered strong evidence for an
expanding universe The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion whereby the scale of space itself changes. The universe does not exp ...
and the Big Bang theory.This was recognized early on by physicists and astronomers working in cosmology in the 1930s. The earliest layman publication describing the details of this correspondence is (Reprint: )


Measurement, characterization, and interpretation

The
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
of light that comes from a source (see idealized spectrum illustration top-right) can be measured. To determine the redshift, one searches for features in the spectrum such as
absorption lines A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to identi ...
,
emission lines A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to iden ...
, or other variations in light intensity. If found, these features can be compared with known features in the spectrum of various chemical compounds found in experiments where that compound is located on Earth. A very common atomic element in space is
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
. The spectrum of originally featureless light shone through hydrogen will show a signature spectrum specific to hydrogen that has features at regular intervals. If restricted to absorption lines it would look similar to the illustration (top right). If the same pattern of intervals is seen in an observed spectrum from a distant source but occurring at shifted wavelengths, it can be identified as hydrogen too. If the same spectral line is identified in both spectra—but at different wavelengths—then the redshift can be calculated using the table below. Determining the redshift of an object in this way requires a frequency or wavelength range. In order to calculate the redshift, one has to know the wavelength of the emitted light in the rest frame of the source: in other words, the wavelength that would be measured by an observer located adjacent to and comoving with the source. Since in astronomical applications this measurement cannot be done directly, because that would require traveling to the distant star of interest, the method using spectral lines described here is used instead. Redshifts cannot be calculated by looking at unidentified features whose rest-frame frequency is unknown, or with a spectrum that is featureless or
white noise In signal processing, white noise is a random signal having equal intensity at different frequencies, giving it a constant power spectral density. The term is used, with this or similar meanings, in many scientific and technical disciplines ...
(random fluctuations in a spectrum). Redshift (and blueshift) may be characterized by the relative difference between the observed and emitted wavelengths (or frequency) of an object. In astronomy, it is customary to refer to this change using a dimensionless quantity called . If represents wavelength and represents frequency (note, where is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
), then is defined by the equations: After is measured, the distinction between redshift and blueshift is simply a matter of whether is positive or negative. For example, Doppler effect blueshifts () are associated with objects approaching (moving closer to) the observer with the light shifting to greater
energies In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat ...
. Conversely, Doppler effect redshifts () are associated with objects receding (moving away) from the observer with the light shifting to lower energies. Likewise, gravitational blueshifts are associated with light emitted from a source residing within a weaker gravitational field as observed from within a stronger gravitational field, while gravitational redshifting implies the opposite conditions.


Redshift formulae

In general relativity one can derive several important special-case formulae for redshift in certain special spacetime geometries, as summarized in the following table. In all cases the magnitude of the shift (the value of ) is independent of the wavelength.See Binney and Merrifeld (1998), Carroll and Ostlie (1996), Kutner (2003) for applications in astronomy.


Doppler effect

If a source of the light is moving away from an observer, then redshift () occurs; if the source moves towards the observer, then blueshift () occurs. This is true for all electromagnetic waves and is explained by the Doppler effect. Consequently, this type of redshift is called the ''Doppler redshift''. If the source moves away from the observer with
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
, which is much less than the speed of light (), the redshift is given by :z \approx \frac     (since \gamma \approx 1) where is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
. In the classical Doppler effect, the frequency of the source is not modified, but the recessional motion causes the illusion of a lower frequency. A more complete treatment of the Doppler redshift requires considering relativistic effects associated with motion of sources close to the speed of light. A complete derivation of the effect can be found in the article on the
relativistic Doppler effect The relativistic Doppler effect is the change in frequency (and wavelength) of light, caused by the relative motion of the source and the observer (as in the classical Doppler effect), when taking into account effects described by the special the ...
. In brief, objects moving close to the speed of light will experience deviations from the above formula due to the
time dilation In physics and relativity, time dilation is the difference in the elapsed time as measured by two clocks. It is either due to a relative velocity between them ( special relativistic "kinetic" time dilation) or to a difference in gravitational ...
of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
which can be corrected for by introducing the
Lorentz factor The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativit ...
into the classical Doppler formula as follows (for motion solely in the line of sight): :1 + z = \left(1 + \frac\right) \gamma. This phenomenon was first observed in a 1938 experiment performed by Herbert E. Ives and G.R. Stilwell, called the Ives–Stilwell experiment. Since the Lorentz factor is dependent only on the
magnitude Magnitude may refer to: Mathematics *Euclidean vector, a quantity defined by both its magnitude and its direction *Magnitude (mathematics), the relative size of an object *Norm (mathematics), a term for the size or length of a vector *Order of ...
of the velocity, this causes the redshift associated with the relativistic correction to be independent of the orientation of the source movement. In contrast, the classical part of the formula is dependent on the projection of the movement of the source into the line-of-sight which yields different results for different orientations. If is the angle between the direction of relative motion and the direction of emission in the observer's frame (zero angle is directly away from the observer), the full form for the relativistic Doppler effect becomes: :1+ z = \frac and for motion solely in the line of sight (), this equation reduces to: :1 + z = \sqrt For the special case that the light is moving at right angle () to the direction of relative motion in the observer's frame, the relativistic redshift is known as the transverse redshift, and a redshift: :1 + z = \frac is measured, even though the object is not moving away from the observer. Even when the source is moving towards the observer, if there is a transverse component to the motion then there is some speed at which the dilation just cancels the expected blueshift and at higher speed the approaching source will be redshifted.


Expansion of space

In the earlier part of the twentieth century, Slipher, Wirtz and others made the first measurements of the redshifts and blueshifts of galaxies beyond the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
. They initially interpreted these redshifts and blueshifts as being due to random motions, but later Lemaître (1927) and Hubble (1929), using previous data, discovered a roughly linear correlation between the increasing redshifts of, and distances to, galaxies. Lemaître realized that these observations could be explained by a mechanism of producing redshifts seen in Friedmann's solutions to Einstein's equations of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
. The correlation between redshifts and distances is required by all such models that have a metric expansion of space. As a result, the wavelength of photons propagating through the expanding space is stretched, creating the cosmological redshift. There is a distinction between a redshift in cosmological context as compared to that witnessed when nearby objects exhibit a
local Local may refer to: Geography and transportation * Local (train), a train serving local traffic demand * Local, Missouri, a community in the United States * Local government, a form of public administration, usually the lowest tier of administrat ...
Doppler-effect redshift. Rather than cosmological redshifts being a consequence of the relative velocities that are subject to the laws of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
(and thus subject to the rule that no two locally separated objects can have relative velocities with respect to each other faster than the speed of light), the photons instead increase in wavelength and redshift because of a global feature of the spacetime through which they are traveling. One interpretation of this effect is the idea that space itself is expanding. Due to the expansion increasing as distances increase, the distance between two remote galaxies can increase at more than 3 m/s, but this does not imply that the galaxies move faster than the speed of light at their present location (which is forbidden by
Lorentz covariance In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same ...
).


Mathematical derivation

The observational consequences of this effect can be derived using the equations from
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
that describe a homogeneous and isotropic universe. To derive the redshift effect, use the geodesic equation for a light wave, which is :ds^2=0=-c^2dt^2+\frac where * is the
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
interval * is the time interval * is the spatial interval * is the speed of light * is the time-dependent cosmic
scale factor In affine geometry, uniform scaling (or isotropic scaling) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a '' scale factor'' that is the same in all directions. The result of uniform scaling is similar ...
* is the curvature per unit area. For an observer observing the crest of a light wave at a position and time , the crest of the light wave was emitted at a time in the past and a distant position . Integrating over the path in both space and time that the light wave travels yields: : c \int_^ \frac\; = \int_^ \frac\,. In general, the wavelength of light is not the same for the two positions and times considered due to the changing properties of the metric. When the wave was emitted, it had a wavelength . The next crest of the light wave was emitted at a time :t=t_\mathrm+\lambda_\mathrm/c\,. The observer sees the next crest of the observed light wave with a wavelength to arrive at a time :t=t_\mathrm+\lambda_\mathrm/c\,. Since the subsequent crest is again emitted from and is observed at , the following equation can be written: : c \int_^ \frac\; = \int_^ \frac\,. The right-hand side of the two integral equations above are identical which means : c \int_^ \frac\; = c \int_^ \frac\, Using the following manipulation: : \begin 0 & = \int_^ \frac - \int_^ \frac \\ & = \int_^\frac+\int_^\frac- \int_^ \frac \\ & = \int_^\frac-\left(\int_^\frac+\int_^ \frac\right) \\ & = \int_^\frac-\int_^\frac \end we find that: : \int_^ \frac\; = \int_^ \frac\,. For very small variations in time (over the period of one cycle of a light wave) the scale factor is essentially a constant ( today and previously). This yields :\frac-\frac\; = \frac-\frac which can be rewritten as :\frac=\frac\,. Using the definition of redshift provided above, the equation :1+z = \frac is obtained. In an expanding universe such as the one we inhabit, the scale factor is monotonically increasing as time passes, thus, is positive and distant galaxies appear redshifted. ---- Using a model of the expansion of the universe, redshift can be related to the age of an observed object, the so-called '' cosmic time–redshift relation''. Denote a density ratio as : :\Omega_0 = \frac \ , with the critical density demarcating a universe that eventually crunches from one that simply expands. This density is about three hydrogen atoms per cubic meter of space. At large redshifts, , one finds: : t(z) \approx \frac \ , where is the present-day
Hubble constant Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving ...
, and is the redshift.


Distinguishing between cosmological and local effects

For cosmological redshifts of additional Doppler redshifts and blueshifts due to the peculiar motions of the galaxies relative to one another cause a wide scatter from the standard Hubble Law. The resulting situation can be illustrated by the Expanding Rubber Sheet Universe, a common cosmological analogy used to describe the expansion of space. If two objects are represented by ball bearings and spacetime by a stretching rubber sheet, the Doppler effect is caused by rolling the balls across the sheet to create peculiar motion. The cosmological redshift occurs when the ball bearings are stuck to the sheet and the sheet is stretched."It is perfectly valid to interpret the equations of relativity in terms of an expanding space. The mistake is to push analogies too far and imbue space with physical properties that are not consistent with the equations of relativity." The redshifts of galaxies include both a component related to
recessional velocity Recessional velocity is the rate at which an extragalactic astronomical object recedes (becomes more distant) from an observer as a result of the expansion of the universe. It can be measured by observing the wavelength shifts of spectral lines e ...
from expansion of the universe, and a component related to peculiar motion (Doppler shift). The redshift due to expansion of the universe depends upon the recessional velocity in a fashion determined by the cosmological model chosen to describe the expansion of the universe, which is very different from how Doppler redshift depends upon local velocity.. A pdf file can be found her

Describing the cosmological expansion origin of redshift, cosmologist Edward Robert Harrison said, "Light leaves a galaxy, which is stationary in its local region of space, and is eventually received by observers who are stationary in their own local region of space. Between the galaxy and the observer, light travels through vast regions of expanding space. As a result, all wavelengths of the light are stretched by the expansion of space. It is as simple as that..."
Steven Weinberg Steven Weinberg (; May 3, 1933 – July 23, 2021) was an American theoretical physicist and Nobel laureate in physics for his contributions with Abdus Salam and Sheldon Glashow to the unification of the weak force and electromagnetic interac ...
clarified, "The increase of wavelength from emission to absorption of light does not depend on the rate of change of Robertson–Walker_scale_factor.html" ;"title="Scale factor (cosmology)">Robertson–Walker scale factor">Scale factor (cosmology)">Robertson–Walker scale factorat the times of emission or absorption, but on the increase of in the whole period from emission to absorption." Popular literature often uses the expression "Doppler redshift" instead of "cosmological redshift" to describe the redshift of galaxies dominated by the expansion of spacetime, but the cosmological redshift is not found using the relativistic Doppler equation which is instead characterized by
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
; thus is impossible while, in contrast, is possible for cosmological redshifts because the space which separates the objects (for example, a quasar from the Earth) can expand faster than the speed of light. More mathematically, the viewpoint that "distant galaxies are receding" and the viewpoint that "the space between galaxies is expanding" are related by changing coordinate systems. Expressing this precisely requires working with the mathematics of the Friedmann–Robertson–Walker metric. If the universe were contracting instead of expanding, we would see distant galaxies blueshifted by an amount proportional to their distance instead of redshifted.


Gravitational redshift

In the theory of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, there is time dilation within a gravitational well. This is known as the
gravitational redshift In physics and general relativity, gravitational redshift (known as Einstein shift in older literature) is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well (seem to) lose energy. This loss of energy ...
or ''Einstein Shift''. The theoretical derivation of this effect follows from the
Schwarzschild solution In Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assump ...
of the
Einstein equations In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Einstein in 1915 in the form ...
which yields the following formula for redshift associated with a photon traveling in the gravitational field of an uncharged, nonrotating,
spherically symmetric In geometry, circular symmetry is a type of continuous symmetry for a planar object that can be rotated by any arbitrary angle and map onto itself. Rotational circular symmetry is isomorphic with the circle group in the complex plane, or the ...
mass: :1+z=\frac, where * is the gravitational constant, * is the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
of the object creating the gravitational field, * is the radial coordinate of the source (which is analogous to the classical distance from the center of the object, but is actually a Schwarzschild coordinate), and * is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
. This gravitational redshift result can be derived from the assumptions of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
and the equivalence principle; the full theory of general relativity is not required. The effect is very small but measurable on Earth using the Mössbauer effect and was first observed in the Pound–Rebka experiment. However, it is significant near a black hole, and as an object approaches the
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact ob ...
the red shift becomes infinite. It is also the dominant cause of large angular-scale temperature fluctuations in the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
radiation (see Sachs–Wolfe effect).


Observations in astronomy

The redshift observed in astronomy can be measured because the emission and absorption spectra for
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, ...
s are distinctive and well known, calibrated from
spectroscopic Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
experiments in laboratories on Earth. When the redshift of various absorption and emission lines from a single astronomical object is measured, is found to be remarkably constant. Although distant objects may be slightly blurred and lines broadened, it is by no more than can be explained by
thermal A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
or mechanical
motion In physics, motion is the phenomenon in which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed and frame of reference to an observer and m ...
of the source. For these reasons and others, the consensus among astronomers is that the redshifts they observe are due to some combination of the three established forms of Doppler-like redshifts. Alternative hypotheses and explanations for redshift such as tired light are not generally considered plausible.When cosmological redshifts were first discovered,
Fritz Zwicky Fritz Zwicky (; ; February 14, 1898 – February 8, 1974) was a Swiss astronomer. He worked most of his life at the California Institute of Technology in the United States of America, where he made many important contributions in theoretical an ...
proposed an effect known as tired light. While usually considered for historical interests, it is sometimes, along with intrinsic redshift suggestions, utilized by nonstandard cosmologies. In 1981, H. J. Reboul summarised man
alternative redshift mechanisms
that had been discussed in the literature since the 1930s. In 2001,
Geoffrey Burbidge Geoffrey Ronald Burbidge FRS (24 September 1925 – 26 January 2010) was an English astronomy professor and theoretical astrophysicist, most recently at the University of California, San Diego. He was married to astrophysicist Margaret Burbi ...
remarked in
review
that the wider astronomical community has marginalized such discussions since the 1960s. Burbidge and Halton Arp, while investigating the mystery of the nature of quasars, tried to develop alternative redshift mechanisms, and very few of their fellow scientists acknowledged let alone accepted their work. Moreover, pointed out that alternative theories are unable to account for timescale stretch observed in type Ia supernovae
Spectroscopy, as a measurement, is considerably more difficult than simple photometry, which measures the
brightness Brightness is an attribute of visual perception in which a source appears to be radiating or reflecting light. In other words, brightness is the perception elicited by the luminance of a visual target. The perception is not linear to luminan ...
of astronomical objects through certain filters. When photometric data is all that is available (for example, the Hubble Deep Field and the Hubble Ultra Deep Field), astronomers rely on a technique for measuring
photometric redshift A photometric redshift is an estimate for the recession velocity of an astronomical object such as a galaxy or quasar, made without measuring its spectrum. The technique uses photometry (that is, the brightness of the object viewed through various ...
s. Due to the broad wavelength ranges in photometric filters and the necessary assumptions about the nature of the spectrum at the light-source, errors for these sorts of measurements can range up to , and are much less reliable than spectroscopic determinations. However, photometry does at least allow a qualitative characterization of a redshift. For example, if a Sun-like spectrum had a redshift of , it would be brightest in the
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
rather than at the yellow-green color associated with the peak of its
blackbody A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The name "black body" is given because it absorbs all colors of light. A black body ...
spectrum, and the light intensity will be reduced in the filter by a factor of four, . Both the photon count rate and the photon energy are redshifted. (See K correction for more details on the photometric consequences of redshift.)


Local observations

In nearby objects (within our
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
galaxy) observed redshifts are almost always related to the line-of-sight velocities associated with the objects being observed. Observations of such redshifts and blueshifts have enabled astronomers to measure velocities and parametrize the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
es of the
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
ing stars in
spectroscopic binaries A binary star is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in w ...
, a method first employed in 1868 by British astronomer
William Huggins Sir William Huggins (7 February 1824 – 12 May 1910) was an English astronomer best known for his pioneering work in astronomical spectroscopy together with his wife, Margaret. Biography William Huggins was born at Cornhill, Middlesex, in ...
. Similarly, small redshifts and blueshifts detected in the spectroscopic measurements of individual stars are one way astronomers have been able to diagnose and measure the presence and characteristics of planetary systems around other stars and have even made very detailed differential measurements of redshifts during planetary transits to determine precise orbital parameters. Finely detailed measurements of redshifts are used in
helioseismology Helioseismology, a term coined by Douglas Gough, is the study of the structure and dynamics of the Sun through its oscillations. These are principally caused by sound waves that are continuously driven and damped by convection near the Sun's sur ...
to determine the precise movements of the photosphere of the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
. Redshifts have also been used to make the first measurements of the rotation rates of
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s, velocities of
interstellar cloud An interstellar cloud is generally an accumulation of gas, plasma, and dust in our and other galaxies. Put differently, an interstellar cloud is a denser-than-average region of the interstellar medium, the matter and radiation that exists in ...
s, the rotation of galaxies, and the dynamics of accretion onto
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
s and black holes which exhibit both Doppler and gravitational redshifts. Additionally, the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
s of various emitting and absorbing objects can be obtained by measuring Doppler broadening—effectively redshifts and blueshifts over a single emission or absorption line. By measuring the broadening and shifts of the 21-centimeter
hydrogen line The hydrogen line, 21 centimeter line, or H I line is the electromagnetic radiation spectral line that is created by a change in the energy state of neutral hydrogen atoms. This electromagnetic radiation has a precise frequency of , w ...
in different directions, astronomers have been able to measure the recessional velocities of
interstellar gas In astronomy, the interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstella ...
, which in turn reveals the
rotation curve The rotation curve of a disc galaxy (also called a velocity curve) is a plot of the orbital speeds of visible stars or gas in that galaxy versus their radial distance from that galaxy's centre. It is typically rendered graphically as a plot, ...
of our Milky Way. Similar measurements have been performed on other galaxies, such as Andromeda. As a diagnostic tool, redshift measurements are one of the most important spectroscopic measurements made in astronomy.


Extragalactic observations

The most distant objects exhibit larger redshifts corresponding to the
Hubble flow Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
of the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. ...
. The largest-observed redshift, corresponding to the greatest distance and furthest back in time, is that of the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
radiation; the numerical value of its redshift is about ( corresponds to present time), and it shows the state of the universe about 13.8 billion years ago, and 379,000 years after the initial moments of the Big Bang. The luminous point-like cores of quasars were the first "high-redshift" () objects discovered before the improvement of telescopes allowed for the discovery of other high-redshift galaxies. For galaxies more distant than the
Local Group The Local Group is the galaxy group that includes the Milky Way. It has a total diameter of roughly , and a total mass of the order of . It consists of two collections of galaxies in a "dumbbell" shape: the Milky Way and its satellites form ...
and the nearby
Virgo Cluster The Virgo Cluster is a large cluster of galaxies whose center is 53.8 ± 0.3 Mly (16.5 ± 0.1 Mpc) away in the constellation Virgo. Comprising approximately 1,300 (and possibly up to 2,000) member galaxies, the cluster forms the heart of the la ...
, but within a thousand mega
parsec The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (au), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, an ...
s or so, the redshift is approximately proportional to the galaxy's distance. This correlation was first observed by Edwin Hubble and has come to be known as
Hubble's law Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
.
Vesto Slipher Vesto Melvin Slipher (; November 11, 1875 – November 8, 1969) was an American astronomer who performed the first measurements of radial velocities for galaxies. He was the first to discover that distant galaxies are redshifted, thus providing t ...
was the first to discover galactic redshifts, in about the year 1912, while Hubble correlated Slipher's measurements with distances he measured by other means to formulate his Law. In the widely accepted cosmological model based on
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, redshift is mainly a result of the expansion of space: this means that the farther away a galaxy is from us, the more the space has expanded in the time since the light left that galaxy, so the more the light has been stretched, the more redshifted the light is, and so the faster it appears to be moving away from us. Hubble's law follows in part from the Copernican principle.Peebles (1993). Because it is usually not known how luminous objects are, measuring the redshift is easier than more direct distance measurements, so redshift is sometimes in practice converted to a crude distance measurement using Hubble's law. Gravitational interactions of galaxies with each other and clusters cause a significant scatter in the normal plot of the Hubble diagram. The peculiar velocities associated with galaxies superimpose a rough trace of the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
of virialized objects in the universe. This effect leads to such phenomena as nearby galaxies (such as the
Andromeda Galaxy The Andromeda Galaxy (IPA: ), also known as Messier 31, M31, or NGC 224 and originally the Andromeda Nebula, is a barred spiral galaxy with the diameter of about approximately from Earth and the nearest large galaxy to the Milky Way. The gal ...
) exhibiting blueshifts as we fall towards a common
barycenter In astronomy, the barycenter (or barycentre; ) is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object. It is an important con ...
, and redshift maps of clusters showing a fingers of god effect due to the scatter of peculiar velocities in a roughly spherical distribution. This added component gives cosmologists a chance to measure the masses of objects independent of the
mass-to-light ratio In astrophysics and physical cosmology the mass-to-light ratio, normally designated with the Greek letter upsilon, , is the quotient between the total mass of a spatial volume (typically on the scales of a galaxy or a cluster) and its luminosity. T ...
(the ratio of a galaxy's mass in solar masses to its brightness in solar luminosities), an important tool for measuring
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
. The Hubble law's linear relationship between distance and redshift assumes that the rate of expansion of the universe is constant. However, when the universe was much younger, the expansion rate, and thus the Hubble "constant", was larger than it is today. For more distant galaxies, then, whose light has been travelling to us for much longer times, the approximation of constant expansion rate fails, and the Hubble law becomes a non-linear integral relationship and dependent on the history of the expansion rate since the emission of the light from the galaxy in question. Observations of the redshift-distance relationship can be used, then, to determine the expansion history of the universe and thus the matter and energy content. While it was long believed that the expansion rate has been continuously decreasing since the Big Bang, recent observations of the redshift-distance relationship using
Type Ia supernova A Type Ia supernova (read: "type one-A") is a type of supernova that occurs in binary systems (two stars orbiting one another) in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white ...
e have suggested that in comparatively recent times the expansion rate of the universe has begun to accelerate.


Highest redshifts

Currently, the objects with the highest known redshifts are galaxies and the objects producing gamma ray bursts. The most reliable redshifts are from
spectroscopic Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
data, and the highest-confirmed spectroscopic redshift of a galaxy is that of GN-z11, with a redshift of , corresponding to 400 million years after the Big Bang. The previous record was held by UDFy-38135539 at a redshift of , corresponding to 600 million years after the Big Bang. Slightly less reliable are Lyman-break redshifts, the highest of which is the lensed galaxy A1689-zD1 at a redshift and the next highest being . The most distant-observed
gamma-ray burst In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies. They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten millise ...
with a spectroscopic redshift measurement was GRB 090423, which had a redshift of . The most distant-known quasar,
ULAS J1342+0928 ULAS J1342+0928 is the second-most distant known quasar detected and contains the second-most distant and oldest known supermassive black hole, at a reported redshift of z = 7.54. The ULAS J1342+0928 quasar is located in the Boötes constellati ...
, is at . The highest-known redshift radio galaxy (TGSS1530) is at a redshift and the highest-known redshift molecular material is the detection of emission from the CO molecule from the quasar SDSS J1148+5251 at . ''Extremely red objects'' (EROs) are astronomical sources of radiation that radiate energy in the red and near infrared part of the electromagnetic spectrum. These may be starburst galaxies that have a high redshift accompanied by reddening from intervening dust, or they could be highly redshifted elliptical galaxies with an older (and therefore redder) stellar population. Objects that are even redder than EROs are termed ''hyper extremely red objects'' (HEROs). The
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
has a redshift of , corresponding to an age of approximately 379,000 years after the Big Bang and a proper distance of more than 46 billion light-years. The yet-to-be-observed first light from the oldest
Population III stars During 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations. In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926: Baade noticed th ...
, not long after atoms first formed and the CMB ceased to be absorbed almost completely, may have redshifts in the range of . Other high-redshift events predicted by physics but not presently observable are the
cosmic neutrino background The cosmic neutrino background (CNB or CB) is the universe's background particle radiation composed of neutrinos. They are sometimes known as relic neutrinos. The CB is a relic of the Big Bang; while the cosmic microwave background radiation (CM ...
from about two seconds after the Big Bang (and a redshift in excess of ) and the cosmic
gravitational wave background The gravitational wave background (also GWB and stochastic background) is a random gravitational-wave signal potentially detectable by gravitational wave detection experiments. Since the background is supposed to be statistically random, it has ...
emitted directly from
inflation In economics, inflation is an increase in the general price level of goods and services in an economy. When the general price level rises, each unit of currency buys fewer goods and services; consequently, inflation corresponds to a reduct ...
at a redshift in excess of . In June 2015, astronomers reported evidence for
Population III stars During 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations. In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926: Baade noticed th ...
in the Cosmos Redshift 7 galaxy at . Such stars are likely to have existed in the very early universe (i.e., at high redshift), and may have started the production of
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
s heavier than
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
that are needed for the later formation of
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s and
life Life is a quality that distinguishes matter that has biological processes, such as Cell signaling, signaling and self-sustaining processes, from that which does not, and is defined by the capacity for Cell growth, growth, reaction to Stimu ...
as we know it.


Redshift surveys

With advent of automated
telescope A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to observ ...
s and improvements in spectroscopes, a number of collaborations have been made to map the universe in redshift space. By combining redshift with angular position data, a redshift survey maps the 3D distribution of matter within a field of the sky. These observations are used to measure properties of the large-scale structure of the universe. The
Great Wall The Great Wall of China (, literally "ten thousand ''li'' wall") is a series of fortifications that were built across the historical northern borders of ancient Chinese states and Imperial China as protection against various nomadic groups ...
, a vast supercluster of galaxies over 500 million light-years wide, provides a dramatic example of a large-scale structure that redshift surveys can detect. The first redshift survey was the CfA Redshift Survey, started in 1977 with the initial data collection completed in 1982. More recently, the 2dF Galaxy Redshift Survey determined the large-scale structure of one section of the universe, measuring redshifts for over 220,000 galaxies; data collection was completed in 2002, and the final
data set A data set (or dataset) is a collection of data. In the case of tabular data, a data set corresponds to one or more database tables, where every column of a table represents a particular variable, and each row corresponds to a given record of the ...
was released 30 June 2003. The Sloan Digital Sky Survey (SDSS), is ongoing as of 2013 and aims to measure the redshifts of around 3 million objects. SDSS has recorded redshifts for galaxies as high as 0.8, and has been involved in the detection of quasars beyond . The DEEP2 Redshift Survey uses the Keck telescopes with the new "DEIMOS" spectrograph; a follow-up to the pilot program DEEP1, DEEP2 is designed to measure faint galaxies with redshifts 0.7 and above, and it is therefore planned to provide a high-redshift complement to SDSS and 2dF.


Effects from physical optics or radiative transfer

The interactions and phenomena summarized in the subjects of
radiative transfer Radiative transfer is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative trans ...
and physical optics can result in shifts in the wavelength and frequency of electromagnetic radiation. In such cases, the shifts correspond to a physical energy transfer to matter or other photons rather than being by a transformation between reference frames. Such shifts can be from such physical phenomena as coherence effects or the scattering of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) li ...
whether from charged
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, a ...
s, from
particulates Particulates – also known as atmospheric aerosol particles, atmospheric particulate matter, particulate matter (PM) or suspended particulate matter (SPM) – are microscopic particles of solid or liquid matter suspended in the air. The t ...
, or from fluctuations of the index of refraction in a
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the mate ...
medium as occurs in the radio phenomenon of radio whistlers. While such phenomena are sometimes referred to as "redshifts" and "blueshifts", in astrophysics light-matter interactions that result in energy shifts in the radiation field are generally referred to as "reddening" rather than "redshifting" which, as a term, is normally reserved for the effects discussed above. In many circumstances scattering causes radiation to redden because
entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynam ...
results in the predominance of many low-
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
photons over few high-energy ones (while conserving total energy). Except possibly under carefully controlled conditions, scattering does not produce the same relative change in wavelength across the whole spectrum; that is, any calculated is generally a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
of wavelength. Furthermore, scattering from
random In common usage, randomness is the apparent or actual lack of pattern or predictability in events. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual ra ...
media Media may refer to: Communication * Media (communication), tools used to deliver information or data ** Advertising media, various media, content, buying and placement for advertising ** Broadcast media, communications delivered over mass e ...
generally occurs at many
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles a ...
s, and is a function of the scattering angle. If multiple scattering occurs, or the scattering particles have relative motion, then there is generally distortion of
spectral line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to iden ...
s as well. In interstellar astronomy, visible spectra can appear redder due to scattering processes in a phenomenon referred to as
interstellar reddening In astronomy, extinction is the absorption and scattering of electromagnetic radiation by dust and gas between an emitting astronomical object and the observer. Interstellar extinction was first documented as such in 1930 by Robert Julius Trumple ...
—similarly
Rayleigh scattering Rayleigh scattering ( ), named after the 19th-century British physicist Lord Rayleigh (John William Strutt), is the predominantly elastic scattering of light or other electromagnetic radiation by particles much smaller than the wavelength of th ...
causes the atmospheric reddening of the Sun seen in the sunrise or sunset and causes the rest of the sky to have a blue color. This phenomenon is distinct from red''shift''ing because the
spectroscopic Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
lines are not shifted to other wavelengths in reddened objects and there is an additional dimming and distortion associated with the phenomenon due to photons being scattered in and out of the
line of sight The line of sight, also known as visual axis or sightline (also sight line), is an imaginary line between a viewer/observer/ spectator's eye(s) and a subject of interest, or their relative direction. The subject may be any definable object taken ...
.


Blueshift

The opposite of a redshift is a blueshift. A blueshift is any decrease in
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
(increase in
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
), with a corresponding increase in frequency, of an
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
. In
visible light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 te ...
, this shifts a color towards the blue end of the spectrum.


Doppler blueshift

Doppler blueshift is caused by movement of a source towards the observer. The term applies to any decrease in wavelength and increase in frequency caused by relative motion, even outside the
visible spectrum The visible spectrum is the portion of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called ''visible light'' or simply light. A typical human eye will respond to wa ...
. Only objects moving at near-relativistic speeds toward the observer are noticeably bluer to the
naked eye Naked eye, also called bare eye or unaided eye, is the practice of engaging in visual perception unaided by a magnifying, light-collecting optical instrument, such as a telescope or microscope, or eye protection. Vision corrected to normal ...
, but the wavelength of any reflected or emitted photon or other particle is shortened in the direction of travel. Doppler blueshift is used in
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
to determine relative motion: * The
Andromeda Galaxy The Andromeda Galaxy (IPA: ), also known as Messier 31, M31, or NGC 224 and originally the Andromeda Nebula, is a barred spiral galaxy with the diameter of about approximately from Earth and the nearest large galaxy to the Milky Way. The gal ...
is moving toward our own
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
galaxy within the
Local Group The Local Group is the galaxy group that includes the Milky Way. It has a total diameter of roughly , and a total mass of the order of . It consists of two collections of galaxies in a "dumbbell" shape: the Milky Way and its satellites form ...
; thus, when observed from Earth, its light is undergoing a blueshift. * Components of a binary star system will be blueshifted when moving towards Earth * When observing spiral galaxies, the side spinning toward us will have a slight blueshift ''relative to'' the side spinning away from us (see Tully–Fisher relation). *
Blazar A blazar is an active galactic nucleus (AGN) with a relativistic jet (a jet composed of ionized matter traveling at nearly the speed of light) directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from the ...
s are known to propel relativistic jets toward us, emitting synchrotron radiation and
bremsstrahlung ''Bremsstrahlung'' (), from "to brake" and "radiation"; i.e., "braking radiation" or "deceleration radiation", is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typicall ...
that appears blueshifted. * Nearby stars such as
Barnard's Star Barnard's Star is a red dwarf about six light-years from Earth in the constellation of Ophiuchus. It is the fourth-nearest-known individual star to the Sun after the three components of the Alpha Centauri system, and the closest star in t ...
are moving toward us, resulting in a very small blueshift. * Doppler blueshift of distant objects with a high ''z'' can be subtracted from the much larger cosmological redshift to determine relative motion in the
expanding universe The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion whereby the scale of space itself changes. The universe does not exp ...
.


Gravitational blueshift

Unlike the ''relative'' Doppler blueshift, caused by movement of a source towards the observer and thus dependent on the received angle of the photon, gravitational blueshift is ''absolute'' and does not depend on the received angle of the photon: It is a natural consequence of conservation of energy and
mass–energy equivalence In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement. The principle is described by the physici ...
, and was confirmed experimentally in 1959 with the Pound–Rebka experiment. Gravitational blueshift contributes to
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
(CMB) anisotropy via the Sachs–Wolfe effect: when a gravitational well evolves while a photon is passing, the amount of blueshift on approach will differ from the amount of
gravitational redshift In physics and general relativity, gravitational redshift (known as Einstein shift in older literature) is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well (seem to) lose energy. This loss of energy ...
as it leaves the region.


Blue outliers

There are faraway active galaxies that show a blueshift in their IIIemission lines. One of the largest blueshifts is found in the narrow-line quasar, PG 1543+489, which has a relative velocity of -1150 km/s. These types of galaxies are called "blue outliers".


Cosmological blueshift

In a hypothetical universe undergoing a runaway Big Crunch contraction, a cosmological blueshift would be observed, with galaxies further away being increasingly blueshifted—the exact opposite of the actually observed cosmological redshift in the present
expanding universe The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion whereby the scale of space itself changes. The universe does not exp ...
.


See also

* Cosmic crystallography *
Gravitational potential In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric ...
*
Relativistic Doppler effect The relativistic Doppler effect is the change in frequency (and wavelength) of light, caused by the relative motion of the source and the observer (as in the classical Doppler effect), when taking into account effects described by the special the ...


References


Sources


Articles

* Odenwald, S. & Fienberg, RT. 1993; "Galaxy Redshifts Reconsidered" in ''Sky & Telescope'' Feb. 2003; pp31–35 (This article is useful further reading in distinguishing between the 3 types of redshift and their causes.) * Lineweaver, Charles H. and Tamara M. Davis,
Misconceptions about the Big Bang
, ''
Scientific American ''Scientific American'', informally abbreviated ''SciAm'' or sometimes ''SA'', is an American popular science magazine. Many famous scientists, including Albert Einstein and Nikola Tesla, have contributed articles to it. In print since 1845, it ...
'', March 2005. (This article is useful for explaining the cosmological redshift mechanism as well as clearing up misconceptions regarding the physics of the expansion of space.)


Books

* * * * * * * * * * * See also physical cosmology textbooks for applications of the cosmological and gravitational redshifts.


External links


Ned Wright's Cosmology tutorial





Animated GIF of Cosmological Redshift
by Wayne Hu * {{Cosmology topics Astronomical spectroscopy Doppler effects Effects of gravitation Physical cosmology Physical quantities Concepts in astronomy