Beta (plasma physics)
   HOME

TheInfoList



OR:

The beta of a plasma, symbolized by ''β'', is the ratio of the plasma
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
(''p'' = ''n'' ''k''B ''T'') to the
magnetic pressure In physics, magnetic pressure is an energy density associated with a magnetic field. In SI units, the energy density P_B of a magnetic field with strength B can be expressed as :P_B = \frac where \mu_0 is the vacuum permeability. Any magnetic fie ...
(''p''mag = ''B''²/2 ''μ''0). The term is commonly used in studies of the Sun and Earth's
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
, and in the field of
fusion power Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices de ...
designs. In the fusion power field, plasma is often confined using strong magnets. Since the temperature of the fuel scales with pressure, reactors attempt to reach the highest pressures possible. The costs of large magnets roughly scales like ''β½''. Therefore, beta can be thought of as a ratio of money out to money in for a reactor, and beta can be thought of (very approximately) as an economic indicator of reactor efficiency. For
tokamak A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being ...
s, betas of larger than 0.05 or 5% are desired for economically viable electrical production. The same term is also used when discussing the interactions of the
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
with various magnetic fields. For example, beta in the corona of the Sun is about 0.01.


Background


Fusion basics

Nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
occurs when the nuclei of two atoms approach closely enough for the
nuclear force The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nucle ...
to pull them together into a single larger nucleus. The strong force is opposed by the
electrostatic force Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is convention ...
created by the positive charge of the nuclei's
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s, pushing the nuclei apart. The amount of energy that is needed to overcome this repulsion is known as the Coulomb barrier. The amount of energy released by the fusion reaction when it occurs may be greater or less than the Coulomb barrier. Generally, lighter nuclei with a smaller number of protons and greater number of
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
s will have the greatest ratio of energy released to energy required, and the majority of
fusion power Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices de ...
research focusses on the use of
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
and
tritium Tritium ( or , ) or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with half-life about 12 years. The nucleus of tritium (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of ...
, two
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass num ...
s of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
. Even using these isotopes, the Coulomb barrier is large enough that the nuclei must be given great amounts of energy before they will fuse. Although there are a number of ways to do this, the simplest is to heat the gas mixture, which, according to the
Maxwell–Boltzmann distribution In physics (in particular in statistical mechanics), the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann. It was first defined and use ...
, will result in a small number of particles with the required energy even when the gas as a whole is relatively "cool" compared to the Coulomb barrier energy. In the case of the D-T mixture, rapid fusion will occur when the gas is heated to about 100 million degrees.Bromberg, pg. 18


Confinement

This temperature is well beyond the physical limits of any material container that might contain the gases, which has led to a number of different approaches to solving this problem. The main approach relies on the nature of the fuel at high temperatures. When the fusion fuel gasses are heated to the temperatures required for rapid fusion, they will be completely
ionized Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
into a plasma, a mixture of
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s and nuclei forming a globally neutral gas. As the particles within the gas are charged, this allows them to be manipulated by electric or magnetic fields. This gives rise to the majority of controlled fusion concepts. Even if this temperature is reached, the gas will be constantly losing energy to its surroundings (cooling off). This gives rise to the concept of the "confinement time", the amount of time the plasma is maintained at the required temperature. However, the fusion reactions might deposit their energy back into the plasma, heating it back up, which is a function of the density of the plasma. These considerations are combined in the
Lawson criterion The Lawson criterion is a figure of merit used in nuclear fusion research. It compares the rate of energy being generated by fusion reactions within the fusion fuel to the rate of energy losses to the environment. When the rate of production i ...
, or its modern form, the fusion triple product. In order to be efficient, the rate of fusion energy being deposited into the reactor would ideally be greater than the rate of loss to the surroundings, a condition known as "ignition".


Magnetic confinement fusion approach

In
magnetic confinement fusion Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with ...
(MCF) reactor designs, the plasma is confined within a vacuum chamber using a series of magnetic fields. These fields are normally created using a combination of
electromagnet An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in ...
s and
electrical current Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described b ...
s running through the plasma itself. Systems using only magnets are generally built using the
stellarator A stellarator is a plasma device that relies primarily on external magnets to confine a plasma. Scientists researching magnetic confinement fusion aim to use stellarator devices as a vessel for nuclear fusion reactions. The name refers to the ...
approach, while those using current only are the pinch machines. The most studied approach since the 1970s is the
tokamak A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being ...
, where the fields generated by the external magnets and internal current are roughly equal in magnitude. In all of these machines, the density of the particles in the plasma is very low, often described as a "poor vacuum". This limits its approach to the triple product along the temperature and time axis. This requires magnetic fields on the order of tens of Teslas, currents in the megaampere, and confinement times on the order of tens of seconds. Generating currents of this magnitude is relatively simple, and a number of devices from large banks of
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
s to
homopolar generator A homopolar generator is a DC electrical generator comprising an electrically conductive disc or cylinder rotating in a plane perpendicular to a uniform static magnetic field. A potential difference is created between the center of the disc and t ...
s have been used. However, generating the required magnetic fields is another issue, generally requiring expensive
superconducting magnet A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much ...
s. For any given reactor design, the cost is generally dominated by the cost of the magnets.


Beta

Given that the magnets are a dominant factor in reactor design, and that density and temperature combine to produce pressure, the
ratio In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
of the pressure of the plasma to the magnetic energy density naturally becomes a useful figure of merit when comparing MCF designs. Plainly, the higher the beta value, the more economically viable the design is and further the higher Q value the design possibly has. In effect, the ratio illustrates how effectively a design confines its plasma. This ratio, beta, is widely used in the fusion field: : \beta = \frac = \frac \beta is normally measured in terms of the total magnetic field. However, in any real-world design, the strength of the field varies over the volume of the plasma, so to be specific, the average beta is sometimes referred to as the "beta toroidal". In the tokamak design the total field is a combination of the external toroidal field and the current-induced poloidal one, so the "beta poloidal" is sometimes used to compare the relative strengths of these fields. And as the external magnetic field is the driver of reactor cost, "beta external" is used to consider just this contribution.


Troyon beta limit

In a
tokamak A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being ...
, for a stable plasma, \beta is always much smaller than 1 (otherwise it would collapse). Ideally, a MCF device would want to have as high beta as possible, as this would imply the minimum amount of magnetic force needed for confinement. In practice, most tokamaks operate at beta of order 0.01, or 1%. Spherical tokamaks typically operate at beta values an order of magnitude higher. The record was set by the
START Start can refer to multiple topics: *Takeoff, the phase of flight where an aircraft transitions from moving along the ground to flying through the air *Starting lineup in sports * Standing start, and rolling start, in an auto race Acronyms *S ...
device at 0.4, or 40%. These low achievable betas are due to instabilities in the plasma generated through the interaction of the fields and the motion of the particles due to the induced current. As the amount of current is increased in relation to the external field, these instabilities become uncontrollable. In early pinch experiments the current dominated the field components and the kink and sausage instabilities were common, today collectively referred to as "low-n instabilities". As the relative strength of the external magnetic field is increased, these simple instabilities are damped out, but at a critical field other "high-n instabilities" will invariably appear, notably the
ballooning mode The ballooning instability (a.k.a. ballooning mode instability) is a type of internal pressure-driven plasma instability usually seen in tokamak fusion power reactors or in space plasmas. It is important in fusion research as it determines a set of ...
. For any given fusion reactor design, there is a limit to the beta it can sustain. As beta is a measure of economic merit, a practical tokamak based fusion reactor must be able to sustain a beta above some critical value, which is calculated to be around 5%. Through the 1980s the understanding of the high-n instabilities grew considerably. Shafranov and Yurchenko first published on the issue in 1971 in a general discussion of tokamak design, but it was the work by Wesson and Sykes in 1983 and Francis Troyon in 1984 that developed these concepts fully. Troyon's considerations, or the "Troyon limit", closely matched the real-world performance of existing machines. It has since become so widely used that it is often known simply as ''the'' beta limit in tokamaks. The Troyon limit is given as: : \beta_\text = \fracFriedberg, pg. 397 Where ''I'' is the plasma current, B_0 is the external magnetic field, and a is the minor radius of the tokamak (see
torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does n ...
for an explanation of the directions). \beta_N was determined numerically, and is normally given as 0.028 if ''I'' is measured in megaamperes. However, it is also common to use 2.8 if \beta_\text is expressed as a percentage. Given that the Troyon limit suggested a \beta_\text around 2.5 to 4%, and a practical reactor had to have a \beta_\text around 5%, the Troyon limit was a serious concern when it was introduced. However, it was found that \beta_N changed dramatically with the shape of the plasma, and non-circular systems would have much better performance. Experiments on the
DIII-D DIII-D is a tokamak that has been operated since the late 1980s by General Atomics (GA) in San Diego, USA, for the U.S. Department of Energy. The DIII-D National Fusion Facility is part of the ongoing effort to achieve magnetically confined fusio ...
machine (the second D referring to the cross-sectional shape of the plasma) demonstrated higher performance, and the spherical tokamak design outperformed the Troyon limit by about 10 times.


Astrophysics

Beta is also sometimes used when discussing the interaction of plasma in space with different magnetic fields. A common example is the interaction of the
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
with the magnetic fields of the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
Alan Hood
"The Plasma Beta"
Magnetohydrostatic Equilibria, 11 January 2000
or
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
. In this case, the betas of these natural phenomena are generally much smaller than those seen in reactor designs; the Sun's
corona Corona (from the Latin for 'crown') most commonly refers to: * Stellar corona, the outer atmosphere of the Sun or another star * Corona (beer), a Mexican beer * Corona, informal term for the coronavirus SARS-CoV-2, which causes the COVID-19 di ...
has a beta around 1%. Active regions have much higher beta, over 1 in some cases, which makes the area unstable.G. Allan Gary
"Plasma Beta Above a Solar Active region: Rethinking the Paradigm"
''Solar Physics'', Volume 203 (2001), pg. 71–86


See also

*
List of plasma (physics) articles This is a list of plasma physics topics. A * Ablation * Abradable coating * Abraham–Lorentz force * Absorption band * Accretion disk * Active galactic nucleus * Adiabatic invariant * ADITYA (tokamak) * Aeronomy * Afterglow plasma * ...
*
Plasma (physics) Plasma ()πλάσμα
, Henry George Liddell, R ...


References


Notes


Bibliography

* Joan Lisa Bromberg
"Fusion: Science, Politics, and the Invention of a New Energy Source"
MIT Press, 1982 * Jeffrey Freidberg
"Plasma Physics and Fusion Energy"
Cambridge University Press, 2007 {{refend Plasma physics