Bessel's inequality
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, especially
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defi ...
, Bessel's inequality is a statement about the coefficients of an element x in a
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
with respect to an
orthonormal In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal (or perpendicular along a line) unit vectors. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of ...
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
. The inequality was derived by F.W. Bessel in 1828. Let H be a Hilbert space, and suppose that e_1, e_2, ... is an orthonormal sequence in H. Then, for any x in H one has :\sum_^\left\vert\left\langle x,e_k\right\rangle \right\vert^2 \le \left\Vert x\right\Vert^2, where ⟨·,·⟩ denotes the
inner product In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often ...
in the Hilbert space H. If we define the infinite sum :x' = \sum_^\left\langle x,e_k\right\rangle e_k, consisting of "infinite sum" of vector resolute x in direction e_k, Bessel's inequality tells us that this series converges. One can think of it that there exists x' \in H that can be described in terms of potential basis e_1, e_2, \dots. For a complete orthonormal sequence (that is, for an orthonormal sequence that is a basis), we have Parseval's identity, which replaces the inequality with an equality (and consequently x' with x). Bessel's inequality follows from the identity :\begin 0 \leq \left\, x - \sum_^n \langle x, e_k \rangle e_k\right\, ^2 &= \, x\, ^2 - 2 \sum_^n \operatorname \langle x, \langle x, e_k \rangle e_k \rangle + \sum_^n , \langle x, e_k \rangle , ^2 \\ &= \, x\, ^2 - 2 \sum_^n , \langle x, e_k \rangle , ^2 + \sum_^n , \langle x, e_k \rangle , ^2 \\ &= \, x\, ^2 - \sum_^n , \langle x, e_k \rangle , ^2, \end which holds for any natural ''n''.


See also

*
Cauchy–Schwarz inequality The Cauchy–Schwarz inequality (also called Cauchy–Bunyakovsky–Schwarz inequality) is considered one of the most important and widely used inequalities in mathematics. The inequality for sums was published by . The corresponding inequality f ...
*
Parseval's theorem In mathematics, Parseval's theorem usually refers to the result that the Fourier transform is unitary; loosely, that the sum (or integral) of the square of a function is equal to the sum (or integral) of the square of its transform. It originates ...


References


External links

*
Bessel's Inequality
the article on Bessel's Inequality on MathWorld. {{Hilbert space Hilbert space Inequalities